Journal of Chemical and Pharmaceutical Research

J. Chem. Pharm. Res., 2011, 3(5):136-144

Synthesis of new β-D-glucuronides: β-D-glucuronosyl-5- (3-aryl-1H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylates

Rajendra Krushnaji Wanare
Department of Chemistry, Jawaharlal Nehru College, Wadi, R.T.M., Nagpur University, Nagpur (MS) India

Abstract

1-(3-Methylbenzo isoxazol-5-yl)-3-phenyl prop-2-en-1-one 1 undergoes interaction with hydrazine hydrate to yield 3-methyl-5-(3-phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole 2, which on oxidation with KMnO_{4} gives 5-(3-phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acid 3. Glucuronidation of these 5-(3-phenyl-1H-pyrazol-5-yl)-1,2- benzisoxazole-3-carboxylic acid $\mathbf{3}$ with free glucuronic acid afforded β-D-glucuronosyl-5-(3-phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylate 4. The structures of the products have been assigned on the basis of ${ }^{1} H$ NMR, ${ }^{13} C$ NMR, $F A B-M S$, optical activity, and elemental analysis. The title compounds are found to have antibacterial and antifungal activities.

Keywords: Chalcones, Pyrazoles, Carboxylic acids, β-D-Glucuronides.

INTRODUCTION

The development of new methods for the synthesis of β-D-glucuronides have attracted a current interest in the organic synthesis due to biological, pharmaceutical importance that some compounds of this class have shown. β-D-Glucuronides are the conjugation products of compounds possessing a carboxylic acid functional group with free glucuronic acid[1]. β-DGlucuronides are polar and chemically reactive metabolites[2-4] it form covalent adduct with protein, generating increasing interest as potential mediator of hypersensitivity reaction, and it shows profound effect on drug metabolism[5-8]. Continuing our studies about heterocyclic β -D-glucuronides, herein we want to describe the synthesis of chalcones and pyrazoles
respectively. The activities of pyrazole derivatives include main topics like remarkable antimicrobial, antioxidant, fungicidal, bacteriocidal, bacteriostatic, sedative, antipyretic, analgesic, anti-inflammatory, muscle relaxant, hypoglycemic and sex stimulating agents[9-17].

EXPERIMENTAL SECTION

General Methods

Chalcones 1 were prepared as described in the literature[18]. Melting points were determined in open glass capillaries and are uncorrected. Optical activity was measured at $29^{\circ} \mathrm{C}$. FT-IR spectra were recorded using KBr disk on Perkin-Elmer spectrum Rx-I spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on Brucker AC-300 F (300 MHz) NMR spectrometer by using DMSO and CDCl_{3} as solvent and tetramethylsilane as an internal standard. Mass spectra were recorded on 70-S Mass spectrometer using m-nitro benzyl alcohol (NBA) matrix. Elemental analysis was determined using the Perkin Elmer 2400 CHN analyzer.

3-Methyl-5-(3-phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole 2a. Reaction of 1-(3-methyl benzoisoxazol-5-yl)-3-phenylprop-2-en-1-one $\mathbf{1 a}(2.6 \mathrm{~g}, 0.01 \mathrm{~mol})$, hydrazine hydrate (0.5 mL), ethyl alcohol (15 mL) and $\mathrm{KOH}(0.6 \mathrm{~g})$ was refluxed on water bath for 5 h . It was cooled and acidified with glacial acetic acid $(1.5 \mathrm{~mL})$, and was poured on ice-cold water (50 mL). The colorless solid was filtered, washed with cold water, dried and crystallized with alcohol (yield $68.5 \%)$. IR (KBr): 903 (pyrazole ring streaching), $3305\left(\mathrm{C}-\mathrm{H}, \mathrm{CH}_{3}\right), 1562(\mathrm{C}=\mathrm{C})$, and $1715 \mathrm{~cm}^{-1}$ $(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}^{6}$): 6.81 (C-H, pyrazole), 13.7 (s, N-H), 2.35 $\left(\mathrm{CH}_{3}\right)$ ppm; ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): $121-145(\mathrm{C}-2, \mathrm{C}-3), 189(\mathrm{C}-1), 155(\mathrm{~s}$, benzisoxazole), 99 (s, pyrazole), 15.9 ($\mathrm{s}, \mathrm{CH}_{3}$, singlet) and 127.5-133.1 (m , benzene); Anal. Calcd. for C, 74.17 ; H, 4.76; N, 15.26. Found: C, 74.15; H, 4.75; N, 15.25\%.

In the same way, other 3-methyl-5-(3-aryl-1 H -pyrazol-5-yl)-1,2-benzisoxazoles 2a-o were prepared by the reaction of $\mathbf{1 a - o}$ with hydrazine hydrate and compounds gave satisfactory C, H, and N analysis Table 1.

3-Methyl-5-[3-(4-hydroxy)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole 2c. mp $120^{\circ} \mathrm{C}$ (yield 53.7%); IR (KBr): $3421(\mathrm{OH}), 903$ (pyrazole ring streaching), $3305\left(\mathrm{C}-\mathrm{H}, \mathrm{CH}_{3}\right), 1562(\mathrm{C}=\mathrm{C})$, and $1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($\left.300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6} \mathrm{~d}_{6}\right): 5.0(\mathrm{C}-\mathrm{OH}),, 11.0(\mathrm{COOH})$, $6.81\left(\mathrm{C}-\mathrm{H}\right.$, pyrazole), $13.7\left(\mathrm{~s}, \mathrm{~N}-\mathrm{H}\right.$, pyrazole), $2.35\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ DMSO- d_{6}): 121-145 (C-2, C-3), 189 (C-1), 155 (s, benzisoxazole), 99 (s , pyrazole), 173 (carboxyl), 15.9 (s, CH_{3}, singlet). Anal. Calcd. for C, 70.09 ; H, 4.49; N, 14.42. Found: C, 70.11; H, 4.50; N, 14.43\%.

3-Methyl-5-[3-(2,4-dihydroxy)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole 2d. $\quad \mathrm{mp} \quad 187^{\circ} \mathrm{C}$ (yield 61.0%); IR (KBr): 3500 and $3480(\mathrm{OH}), 308$ (pyrazole ring streaching), $3309\left(\mathrm{C}-\mathrm{H}, \mathrm{CH}_{3}\right.$), $1560(\mathrm{C}=\mathrm{C})$, and $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{-} \mathrm{d}_{6}$): 4.9 and $5.2(\mathrm{C}-$ OH), $11.0(\mathrm{COOH}), 6.80(\mathrm{C}-\mathrm{H}$, pyrazole $), 13.8\left(\mathrm{~s}, \mathrm{~N}-\mathrm{H}\right.$, pyrazole), $2.31\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO-d $)_{6}$: 120-145 (C-2, C-3), 190 (C-1), 155 (s, benzisoxazole), 98 (s, pyrazole), 172 (carboxyl), 15.7 (s, CH_{3}, singlet). Anal. Calcd. for C, 66.44; H, 4.70; N, 14.93. Found: C, 66.41; H, 4.26; N, 14.93\%.

3-Methyl-5-[3-(4-chloro)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole $\mathbf{2 g}$. mp $218^{\circ} \mathrm{C}$ (yield 74.0%); IR (KBr): $780(\mathrm{C}-\mathrm{Cl}), 902$ (pyrazole ring streaching), $3309\left(\mathrm{C}-\mathrm{H}, \mathrm{CH}_{3}\right), 1560(\mathrm{C}=\mathrm{C})$, and $1710 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{N}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}$): $7.42(\mathrm{C}-\mathrm{Cl}),, 10.5(\mathrm{COOH})$, $6.81\left(\mathrm{C}-\mathrm{H}\right.$, pyrazole), $13.7\left(\mathrm{~s}, \mathrm{~N}-\mathrm{H}\right.$, pyrazole), $2.35\left(\mathrm{CH}_{3}\right) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\right.$ DMSO-d d_{6}): 134.3 (C-Cl), 122 (C-H, benzisoxazole), 148 (pyrazole), 175 (carboxyl), 15.9 (s, CH_{3}, singlet). Anal. Calcd. for C, $65.92 ; \mathrm{H}, 3.90 ; \mathrm{N}, 13.57$. Found: C, $65.91 ; \mathrm{H}, 3.87 ; \mathrm{N}, 13.57 \%$.

5-(3-Phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acid 3a. 3-Methyl-5-(3-phenyl$1 H$-pyrazol-5-yl)-1,2-benzisoxazole $\mathbf{2 a}(2.7 \mathrm{~g}, 0.01 \mathrm{~mol}), \mathrm{KMnO}_{4}(1.5 \mathrm{~g})$, sodium carbonate (1.2 g) and $\mathrm{H}_{2} \mathrm{O}(100 \mathrm{~mL})$ was refluxed under water bath for 4 h , until the purple color of the permanganate has disappeared. It was acidified with dilute $\mathrm{H}_{2} \mathrm{SO}_{4}$, the excess manganese dioxide was removed by adding sodium metabisulphite $(0.1 \mathrm{~g})$, filtered, washed and crystallized with distilled water (yield 50.9%). IR (KBr): 903 (pyrazole ring streaching), $3094\left(\mathrm{C}-\mathrm{H}^{2} \mathrm{CH}_{3}\right), 1591$ $(\mathrm{C}=\mathrm{N})$, and $1688 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) .{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}$): 6.81 ($\mathrm{C}-\mathrm{H}$, pyrazole), 13.7 ($\mathrm{s}, \mathrm{N}-\mathrm{H}$), $2.36\left(\mathrm{CH}_{3}\right), 10.7(\mathrm{~s}, \mathrm{COOH}) \mathrm{ppm} ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): 126147 (benzisoxazole), 99.7 and 148 (C-H, pyrazole), 167.5 (s, COOH), and 127.5-133.1 (m, benzene); Anal. Calcd. for C, 66.88; H, 3.63; N, 13.76. Found: C, 66.87; H, 3.63; N, 13.75\%.

Similarly, various other 5-(3-aryl-1 H -pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acids 3a-o were prepared by the oxidation of 3-methyl-5-(3-aryl-1H-pyrazol-5-yl)-1,2-benzisoxazoles 2a-o with alkaline KMnO_{4} solution and compounds gave satisfactory C, H, and N analysis.
β-D-Glucuronosyl-5-(3-phenyl-1H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylate 4a
Dissolved 5-(3-phenyl-1 H-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acid 3 a ($3.05 \mathrm{~g}, 0.01$ mol) in dry pyridine (4 mL), which was kept at $0^{\circ} \mathrm{C}$, D-glucuronic acid (1.94 g) was added in portion with constant stirring and the solution was left at room temperature for 18 h . The solution was poured over crushed ice, the resulting colorless solid was filter and washed with ice-cold water to obtain β-D-glucuronosyl-5-(3-phenyl-1 H -pyrazol-5-yl)-1,2-benzisoxazole-3carboxylate $4 \mathbf{a}[D]_{D}^{29} 41.27$, (yield 52.4%). IR (KBr): $1263 \mathrm{~cm}^{-1}$ (C-O-C), $3135(\mathrm{OH}), 3063$ (NH), 1714 (C=O), $1152 \mathrm{~cm}^{-1}$ (C-O); ${ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}$): 13.7 (s, NH), $11.0(\mathrm{~s}, \mathrm{COOH}), 3.73-6.15(\mathrm{~m}, \mathrm{OH}), 2.0 \mathrm{ppm}(\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{6}$): $167.9(\mathrm{C}=\mathrm{O}), 173.2 \mathrm{ppm}(\mathrm{COOH})$; $\mathrm{FAB}-\mathrm{MS}: \mathrm{m} / \mathrm{z} 481\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9}\right), 305\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$); Anal. Calcd. for C, 57.30; H, 3.98; N, 8.73. Found: C, 57.32; H, 3.99; N, 8.71\%.

When the reaction of 5-(3-aryl-1 H -pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acids $\mathbf{3 a - o}$ with D -glucuronic acid using dry pyridine afforded several β-D-glucuronosyl-5-(3-aryl-1 H-pyrazol5 -yl)-1,2-benzisoxazole-3-carboxylates 4a-o. Compounds gave satisfactory C, H, and N analysis (Table 2).

β-D-Glucuronosyl-5-[3-(4-hydroxy)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole-3-

carboxylate 4c. (Yield 51.5\%); IR (KBr): $1263 \mathrm{~cm}^{-1}$ (C-O-C), $3540(\mathrm{OH}), 3062(\mathrm{NH}), 1715$ $(\mathrm{C}=\mathrm{O}), 1151 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}-\mathrm{d}_{6}$): 13.7 (s, NH), 11.2 (s, $\mathrm{COOH}), 3.72-6.16(\mathrm{~m}, \mathrm{OH}), 2.0 \mathrm{ppm}(\mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}^{2} \mathrm{~d}_{6}\right): 167.8$ $(\mathrm{C}=\mathrm{O}), 173.5 \mathrm{ppm}(\mathrm{COOH})$; FAB-MS: m/z $497\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{10}\right), 321\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}, \mathrm{M}^{+}-\right.$ $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$); Anal. Calcd. for C, $55.54 ; \mathrm{H}, 3.85$; N, 8.45. Found: C, $55.53 ; \mathrm{H}, 3.83 ; \mathrm{N}, 8.44 \%$.
β-D-Glucuronosyl-5-[3-(2,4-dihydroxy)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole-3carboxylate 4d. (Yield 42.3?\%); IR (KBr): $1262 \mathrm{~cm}^{-1}$ (C-O-C), 3540 and 3510 (2OH), 3061 (NH), $1712(\mathrm{C}=\mathrm{O}), 1151 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+\mathrm{DMSO}_{\mathrm{d}}$): 13.8 (s, NH), $11.2(\mathrm{~s}, \mathrm{COOH}), 3.75-6.16(\mathrm{~m}, \mathrm{OH}), 2.0 \mathrm{ppm}(\mathrm{OH}) ;{ }^{13} \mathrm{C} \mathrm{NMR} \mathrm{(100} \mathrm{MHz} ,\mathrm{CDCl}{ }_{3}+$ DMSO-d $\left.\mathrm{d}_{6}\right):$ $167.9(\mathrm{C}=\mathrm{O})$, $173.5 \mathrm{ppm}(\mathrm{COOH})$; FAB-MS: m/z $513\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{11}\right), 337\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{5}\right.$, $\mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}$); Anal. Calcd. for C, $53.81 ; \mathrm{H}, 3.73$; N, 8.18. Found: C, $53.80 ; \mathrm{H}, 3.72 ; \mathrm{N}, 8.18 \%$.
β-D-Glucuronosyl-5-[3-(4-chloro)phenyl-1H-pyrazol-5-yl]-1,2-benzisoxazole-3-carboxylate 4g. (Yield 48.5%); IR (KBr): $780(\mathrm{C}-\mathrm{Cl}), 902$ (pyrazole ring stretching), $1565(\mathrm{C}=\mathrm{C}), 1712$ ($\mathrm{C}=\mathrm{N}$), $3062(\mathrm{NH}), 1745(\mathrm{C}=\mathrm{O})$, and $1151 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O}) ;{ }^{1} \mathrm{H}$ NMR ($300 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO$\left.\mathrm{d}_{6}\right): 13.7$ (s, NH), $11.3(\mathrm{~s}, \mathrm{COOH}), 3.72-6.18 \mathrm{ppm}(\mathrm{m}, \mathrm{OH}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}+$ DMSO- d_{6}): $167.7(\mathrm{C}=\mathrm{O}), 173.5 \mathrm{ppm}(\mathrm{COOH}) ;$ FAB-MS: m/z $515\left(\mathrm{M}^{+}, \mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{9}\right), 339$ $\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{4}, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$; Anal. Calcd. for C, 53.55; H, 3.52; N, 8.15. Found: C, 53.53; H, 3.51; N, 8.14\%.

Scheme

$$
\begin{aligned}
& \mathrm{R}=\quad \mathrm{a} ; \mathrm{C}_{6} \mathrm{H}_{5} \\
& \text { b; } o-\mathrm{OHC}_{6} \mathrm{H}_{4} \\
& \text { c; } p-\mathrm{OHC}_{6} \mathrm{H}_{4} \\
& \text { d; } 2,4-(\mathrm{OH})_{2} \mathrm{C}_{6} \mathrm{H}_{3} \\
& \text { e; } p \text { - } \mathrm{OH}-m-\mathrm{OCH}_{3} \mathrm{C}_{6} \mathrm{H}_{3} \\
& \text { f; } o-\mathrm{ClC}_{6} \mathrm{H}_{4} \\
& \text { k; 3-C5 } \mathrm{H}_{4} \mathrm{~N} \\
& \text { g; } p-\mathrm{ClC}_{6} \mathrm{H}_{4} \quad 1 ; 4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \\
& \mathrm{~h} ; o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad \mathrm{~m} ; 3-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O} \\
& \text { i, } m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \quad \mathrm{n} ; 3-\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N} \\
& \text { j; } 2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N} \quad \mathrm{o} ; p-N\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}
\end{aligned}
$$

RESULTS AND DISCUSSION

The 1-(3-methyl benzoisoxazol-5-yl)-3-phenyl prop-2-en-1-one 1 were prepared by the ClaisenSchmidt method [18-19] by the condensation of 1-(3-methyl benzisoxazol-5-yl) ethanone with different aldehydes. In the ${ }^{1} \mathrm{H}$ NMR spectrum, 1a exhibited a multiplet for ethylene at $\delta 7.56$ 7.90 and CH_{3} (aliphatic) at $\delta 2.35 \mathrm{ppm}$, while the ${ }^{13} \mathrm{C}$ NMR spectrum showed peaks at $121-145$ (C-2, C-3), $189(\mathrm{C}-1)$ and $15.9 \mathrm{ppm}\left(\mathrm{CH}_{3}\right)$. The IR spectrum showed absorption bands at 1562 ($\mathrm{C}=\mathrm{C}$) and $1715 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O})$. The reaction of 1-(3-methyl benzoisoxazol-5-yl)-3-phenyl prop-2-en-1-one 1a with hydrazine hydrate cyclization occurred to furnish the 3-methyl-5-(3-phenyl$1 H$-pyrazol-5-yl)-1,2-benzisoxazole 2a. The ${ }^{1} \mathrm{H}$ NMR spectrum for 2 a exhibited a singlet for NH at $\delta 13.7, \mathrm{CH}_{3} \delta 2.35 \mathrm{ppm}$ and ${ }^{13} \mathrm{C}$ NMR spectrum showed peak for CH_{3} at 15.9 ppm . Oxidation of above 2 a with KMnO_{4} afforded 5-(3-phenyl-1 H -pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acid 3a. The ${ }^{1} \mathrm{H}$ NMR spectrum for $\mathbf{3 a}$ exhibited singlet for NH at $\delta 13.7$, OH at $\delta 11.0 \mathrm{ppm}$, and the ${ }^{13} \mathrm{C}$ NMR spectrum showed peaks at 167.5 for COOH . The IR spectrum showed broad absorption bands at $3468(\mathrm{OH})$. In view of pronounced biological and pharmacological applications of $\quad \beta$-D-glucuronides, $\quad \beta$-D-glucuronosyl-5-(3-phenyl-1 H -pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylate $\mathbf{4 a}$ have been synthesized by the glucuronidation of 5-(3-phenyl$1 H$-pyrazol-5-yl)-1,2-benzisoxazole-3-carboxylic acid 3a with free D-glucuronic acid using dry pyridine. The absence of -OH absorption broadband in the spectrum, and the presence of strong band at $1263 \mathrm{~cm}^{-1}$ for $\mathrm{C}-\mathrm{O}-\mathrm{C}$ are fully constituent with structure of 4 a . The IR spectrum showed characteristic bands at $3135(\mathrm{OH}), 3063(\mathrm{NH}), 1714(\mathrm{C}=\mathrm{O})$, and $1152 \mathrm{~cm}^{-1}(\mathrm{C}-\mathrm{O})$ groups. The ${ }^{1} \mathrm{H}$ NMR spectrum of 4 a showed signals at $\delta 13.7(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.0(\mathrm{~s}, \mathrm{COOH})$, 3.73-6.15 (m, $\mathrm{OH})$, and $2.0 \mathrm{ppm}(\mathrm{OH})$. The ${ }^{13} \mathrm{C}$ NMR spectrum showed peaks at $167.9(\mathrm{C}=\mathrm{O})$ and 173.2 ppm (COOH). The FAB-MS spectrum showed a molecular ion peak at $481\left(\mathrm{M}^{+}\right)$and base peak appearing at $\mathrm{m} / \mathrm{z} 309\left(\mathrm{C}_{17} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{3}, \mathrm{M}^{+}-\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{6}\right)$ was due to the simultaneous transfer of hydrogen atom and loss of a D-glucuronic acid moiety confirms the molecular formula $\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9}$.

All the compounds gave satisfactory C, H, and N elemental analysis Table 2.

Table 1: Characterization data of compounds 2a-o.

Product	R	Mol. Formula $\left({ }^{\circ} \mathrm{C}\right)$	$\underset{(\%)}{\mathbf{m p}}$	Yield	\% Found (Calcd)			
					C	H	N	
2a	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}$	105	68.5		74.15	4.75	15.25
					(74.17)	(4.76)	(15.26)	
2b	$o-\mathrm{OHC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	120	53.7		70.11	4.50	14.43
					(70.09)	(4.49)	(14.42)	
2c	$p-\mathrm{OHC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2}$	117	71.6		70.13	4.50	13.66
					(70.09)	(4.25)	(13.67)	
2d	2,4-(OH$)_{2} \mathrm{C}_{6} \mathrm{H}_{3}$	$\mathrm{C}_{17} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{3}$	187	61.0		66.41	4.26	14.93
						(66.44)	(4.70)	(14.93)
2e	$\begin{aligned} & p-\mathrm{OH} m-\mathrm{OCH}_{3} \\ & \mathrm{C}_{6} \mathrm{H}_{3} \end{aligned}$	$\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{3} \mathrm{O}_{3}$	241	83.0		67.26	4.70	14.93
						(67.28)	(4.71)	(14.94)
2f	$o-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}$	99	67.5		65.90	3.89	13.56
					(65.92)	(3.90)	(13.57)	
2 g	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{ClN}_{3} \mathrm{O}$	218	74.0		65.91	3.87	13.57
					(65.92)	(3.90)	(13.57)	
2h	$o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$	156	74.0		63.74	3.78	17.48
					(63.75)	(3.78)	(17.49)	
2 i	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{17} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}_{3}$	159	82.0		63.75	3.76	17.47
					(63.75)	(3.78)	(17.49)	
2j	$2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	101	57.0		69.54	4.37	20.19
					(69.55)	(4.38)	(20.28)	
2k	$3-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	97	68.5		69.38	4.36	20.27
					(69.55)	(4.38)	(20.28)	
21	$4-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{16} \mathrm{H}_{12} \mathrm{~N}_{4} \mathrm{O}$	100	77.7		69.53	4.30	20.24
					(69.55)	(4.38)	(20.28)	
2 m	$3-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	$\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{~N}_{3} \mathrm{O}_{2}$	190	79.0		67.92	4.35	15.83
					(67.92)	(4.18)	(15.84)	
2 n	$3-\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{~N}$	$\mathrm{C}_{19} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{O}$	259	66.0		72.59	4.48	17.81
					(72.60)	(4.49)	(17.82)	
20	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}$	119	81.0		71.67	5.69	17.58
					(71.68)	(5.70)	(17.60)	

Table 2: Characterization data of compounds 4a-o.

Product	R	Mol. Formula $\left({ }^{0}\right)$	$\begin{aligned} & {[\alpha]^{29}{ }_{\mathrm{D}}} \\ & (\%) \end{aligned}$	Yield	\% Found (Calcd)			
					C	H	N	
4a	$\mathrm{C}_{6} \mathrm{H}_{5}$	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{9}$	41.27	52.4	(57.30)	57.32	3.99	8.71
						(3.98)	(8.73)	
4b	$o-\mathrm{OHC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{10}$	46.44	56.0		55.54	3.83	8.42
					(55.54)	(3.85)	(8.45)	
4c	$p-\mathrm{OHC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{10}$	46.54	51.5		55.53	3.83	8.44
					(55.54)	(3.85)	(8.45)	
4d	2,4-(OH) $2_{6} \mathrm{C}_{6}$	$\mathrm{C}_{23} \mathrm{H}_{19} \mathrm{~N}_{3} \mathrm{O}_{11}$	47.13	42.3		53.80	3.72	8.18
					(53.81)	(3.73)	(8.18)	
4 e	p-OHm- OCH_{3}	$\mathrm{C}_{24} \mathrm{H}_{21} \mathrm{~N}_{3} \mathrm{O}_{11}$	49.09	49.8		54.65	4.00	7.96
$\begin{aligned} & \mathrm{C}_{6} \mathrm{H}_{3} \\ & 4 \mathrm{f} \end{aligned}$					(54.65)	(4.01)	(7.97)	
	$o-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{9}$	47.82	45.3		53.54	3.51	8.15
					(53.55)	(3.52)	(8.15)	
4 g	$p-\mathrm{ClC}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{ClN}_{3} \mathrm{O}_{9}$	47.83	48.5		53.53	3.51	8.14
					(53.55)	(3.52)	(8.15)	
4h	$o-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{11}$	48.32	54.5		52.46	3.44	10.62
					(52.48)	(3.45)	(10.64)	
$4 i$	$m-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{23} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{11}$	48.33	54.4		52.47	3.45	10.63
					(52.48)	(3.45)	(10.64)	
4j	$2-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{9}$	45.05	43.4		54.76	3.75	11.60
					(54.78)	(3.76)	(11.61)	
4k	$3-\mathrm{C}_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{9}$	44.09	57.9		54.75	3.75	11.60
					(54.78)	(3.76)	(11.61)	
41	4-C ${ }_{5} \mathrm{H}_{4} \mathrm{~N}$	$\mathrm{C}_{22} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{O}_{9}$	45.05	54.3		54.75	3.75	11.62
					(54.78)	(3.76)	(11.61)	
4 m	$3-\mathrm{C}_{4} \mathrm{H}_{3} \mathrm{O}$	$\mathrm{C}_{21} \mathrm{H}_{17} \mathrm{~N}_{3} \mathrm{O}_{10}$	42.93	52.8		53.50	3.62	8.90
					(53.51)	(3.64)	(8.91)	
4 n	$3-\mathrm{C}_{8} \mathrm{H}_{6} \mathrm{~N}$	$\mathrm{C}_{25} \mathrm{H}_{20} \mathrm{~N}_{4} \mathrm{O}_{9}$	50.47	52.0		57.65	3.86	10.75
					(57.69)	(3.87)	(10.77)	
40	$p-\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2} \mathrm{C}_{6} \mathrm{H}_{4}$	$\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{~N}_{4} \mathrm{O}_{9}$	51.12	47.1		57.24	4.60	10.68
					(57.25)	(4.61)	(10.68)	

Microbial activities:

Antimicrobial Activity

The synthesized compounds were tested for their antibacterial activities by the using the cupplate method against Bacillus subtilis (gram-positive) and Escherichia coli (gram-negative) at concentration of $100 \mu \mathrm{~g} / \mathrm{mL}$ in DMF. Pure Norfloxacin was used as standard antibiotic for the comparison of the results. The sterilized Mullier-Hinton agar medium 50 mL was inoculated with test organism and poured into petridishes. Then four holes of 6 mm were completely filled with different test solution. The plates were then incubated for 24 h at $37^{\circ} \mathrm{C}$ and zones of inhibitions were measured. Similar procedure was adopted for pure Norfloxacin and the corresponding zone diameters were compared. Screening results indicate that compounds 4a-o showed to excellent bacteriocidal activities against both organisms Table 3.

Table 3: Data for in vitro antibacterial and antifungal activities of compounds 4a-o

Product	Diameter of Inhibition Zone (in mm) Against			
	Bacterial Strains		Fungal Strain	
	E. Coli	B. subtilis	A. niger	C. albicans
4 a	14	15	16	14
4 b	13	14	12	11
4 c	15	15	13	16
4d	14	10	08	22
4 e	16	11	17	--
4f	--	17	22	24
4 g	10	16	11	13
4 h	17	14	22	18
4 i	13	09	15	28
4 j	12	14	23	21
4k	15	15	11	16
41	10	13	23	23
4 m	17	16	--	18
4 n	08	12	21	--
40	11	15	19	22

-- = No inhibition of growth. Diameter of zone of inhibition from 13-16 (in mm) shows excellent activity and that of 9-12 (in mm) exhibit moderate activity for bacterial strains. Diameter of zone of inhibition from 22-28 (in mm) shows excellent activity, that of 15-21 (in mm) exhibits moderate activity and that of 11-14 (in mm) shows poor activity for fungal strains. Norfloxacin $100 \mu \mathrm{~g} / \mathrm{mL}$ used as standard against E. coli and B. subtilis diameter of zone of inhibition is 20. Griseofulvin $100 \mu \mathrm{~m} / \mathrm{mL}$ used as standard against A. niger and C. albicans diameter of zone of inhibition is 32.

Antifungal Activity

The antifungal activity of synthesized compounds was evaluated by the using above same procedure (cup-plate) against Aspergillus niger and Candida albicans at a concentration $100 \mu \mathrm{~m} / \mathrm{mL}$ in DMF. The plates were incubated for 8 days at $37^{\circ} \mathrm{C}$. The zones of inhibitions were measured. A commercial fungicide griseofulvin was also tested under similar condition with a view of comparing the results. The compounds showed significant fungi toxicity against both the fungi Table 3.

Acknowledgment

The authors are thankful to Director CDRI Lucknow (UP) India for providing necessary spectral data of the compounds, Head Department of Veterinary College Seminary Hill Nagpur (MS) India for screening antimicrobial activities and Principal Jawaharlal Nehru College Wadi Nagpur (MS) India for providing necessary facilities.

REFERENCES

[1] BC Sallustio; L Sabordo; AM Evans; RL Nation. Current Drug Metabolism., 2000, I, 163180.
[2] C King; W Tang; J Ngui; T Tephly; M Braun. Drug Metabolism., 2000, Merk and Company.
[3] QL Gong; T Hedner; R Bjorkman. Eur. J. Pharmacol., 1991, 193, 47-56.
[4] MJ Bailey; RG Dickenson. Chem. Res. Toxicol., 1996, 9, 659-666.
[5] UA Boelstrerli; HJ Zimmerman; A Kretz-Rommel. Crit. Rev. Toxicol., 1995, 25, 207-235.
[6] C Fenselau. Conjugation-deconjugation reaction in drug metabolism and toxicity., 1994, 112, 367-389.
[7] P Zia-Amirhosseini; H Spahn-Langguth; LZ Benet. Adv. Pharmacol., 1994, 27, 385-397.
[8] H Spahn-Langguth; LZ Benet. Drug Metabolism Rev., 1992, 24, 5-48.
[9] Kosuge; Okeda. J. Biochem., 1954, 41, 183.
[10] E Hernab; JJ Gabhks. Cancer Chemotherapy Rept., 1961, 14, 85.
[11] KJ Potts. Comprehensive Heterocyclic Chemistry., Pergaman press, Oxford 1986, 5(4A),
[12] S Rich; J Horsfall. Phytopathology., 1952, 42, 457.
[13] G N Pershin; NA Novitskola; AN Kost; II Grandberg. Dokl. Acad. Nank. 1959, 123, 200.
[14] LG Polevoi. Chem. Abstr., 1966, 65, 19147d.
[15] M Nakanishi; Y Naka; R Kobayashi. J. Chem. Abstr., 1975, 82, 14092.
[16] J Clayden; N Greeves; S Wrren; P Wother. Organic Chemistry, Oxford University Press., 2001, 1, 1196-1197.
[17] MN Narule. J. Chem. Pharm. Res., 2011, 3(3), 38-47.
[18] K Mogilarah; R BabuRao. Claisen-Schmidt condensation in the solid state, Indian J. Chem., 1999, 38B, 869-871.
[19] RK Wanare; VN Ingle; VD Umare; PT Kosankar. Synthesis and Biological Significance of Benzisoxazolyl Chalcones., ICCM-2011, 114-115.

