

Synthesis characterization and antimicrobial activity of 6-nitro-1H-benzo[d]imidazole-2-yl) methyl)-6-oxido-4,8-dihydro-1H-[1, 3, 2] dioxaphosphepino [5,6-c] pyrazole-6-yl) ureas/carboxamides-Mannich bases

C. H. Lakshmi Praveena, V. Esther Rani, Y. N. Spoorthy and L. K. Ravindranath*
Department of Chemistry, S. K. University, Anantapur

Abstract

New mannich bases of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl)methyl))-6-nitro-1H-benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2] dioxaphosphepino [5,6-c] pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxy phenyl/4-chloro phenyl) ureas $\mathbf{9 (a - j)}$ were prepared by condensation reaction between1-((1-(piperidin-1-ylmethyl))/(1-morpholino methyl)/(4-methyl piperazin-1-ylmethyl)-6-nitro-1H-benzo [d] imidazol-2-yl) methyl)-1H-pyrazole-4, 5-diyl) dimethanol 7(a-c) and (phenyl carbamoyl) phosphoric acid dichlorides $8(a-g)$.The synthon $7(a-c)$ was obtained by deprotection of isopropilidine group of 6,6-dimethyl-1-((6-nitro-1-((1-(piperidin-1-ylmethyl)/ (1-morpholinomethyl)) (4-methyl piperazin-1-ylmethyl)-1H-benzo[d]imidazol-2-yl)methyl)-4,8-dihydro-1H-[1,3]-dioxepIno [5,6-c] pyrazole $\mathbf{6}(\boldsymbol{a}-\boldsymbol{c})$.The synthon $\mathbf{6}(\boldsymbol{a}-\boldsymbol{c})$ was obtained by mannich reaction of 6, 6-dimethyl-1-((6-nitro-1H-benzo[d]imidazol-2-yl) methyl-4, 8-dihydro-1H-[1, 3] - dioxepino [5, 6-c] pyrazole (5) with different secondary amines having hetero atom in cyclic ring and HCHO in presence of DMF.The synthon 5 obtained by condensation reaction between 2-(6, 6-dimethyl-4, 8-dihydro-1H-[1, 3] dioxepino [5, 6-c] pyrazole-1-yl) acetic acid 3 and 4-nitro benzene 1,2-amine. Similar procedure was adapted to prepare N-(1-((1-morpholinomethyl)-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-clpyrazol-6-yl)morpholine piperadine/4-methylpiperazine carboxamides ($\mathbf{9 k}$-m).

Key words: (phenyl carbamoyl) phosphoric acid dichlorides, Pyrazole, Cyclizaton, Deprotection, Antibacterial and Antifungal activity.

INTRODUCTION

Pyrazole derivatives possess a broad spectrum of pharmalogical activities such as anticonvulsant $\mathrm{p}[1]$, antiparkinson [2] , monoamine oxidase (MAO) inhibitory activity [3], anti-bacterial, anti-fungal activity [4], it also function as dyestuff, catalyst, polymerizing agents, drugs, herbicides and fungicides [5]. Pyrazole derivatives are valuable vasodialating and vasoconstructing drugs.

Benzimidazoles, benzoxazole and benzthiazoles nuclei are constituent of many of the bioactive heterocyclic compounds that exhibit antianginal, antiischaemic, vasodilator, anti-diabetic, anti-microbial, cardiovascular, tranquilizer and virucidal activities [6-14].

The chemistry of phosphorus heterocyclic compounds containing nitrogen has pioneered the application of combinatorial techniques to the development of new pharmaceutical materials with novel properties [15, 16].

Organophosphorus compounds possess significant biological activity against broad spectrum of bacteria, pets, virus, fungicides and plant growth regulators. The organophosphorus heterocyclic compounds chemistry received much attention of chemists in past two decades due to their wide range of applications in the field of the Agriculture, medicine and industry $[17,18]$. Some organophosphorus compounds have been described in the literature as inhibitors of bacterial [19], herbicides, insecticides, pesticides [20,21], anti-fungal agents [22], anti-HIV [23] , anticancer [24], anti-viral and anti-inflammatory [25] .

A good deal of importance was given to 1, 3, 2-Dioxaphosphorinane and dioxaphospholane derivatives in the field of organophosphorus heterocyclic chemistry due to their unique stereochemical futures and diverse potential biological applications [26, 27]. In view of the numerous commercial applications of organophosphorus compounds. It appeared of interest to synthesize pyrazole derivatives possessing Benzazole moiety besides 1, 3, 2Dioxaphosphorinane and dioxaphospholanes.

EXPRIMENTAL SECTION

All the chemicals used in the present investigation were purchased from Sigma-Aldrich Chemical Company, inc.USA. and used without further purification. TLC was performed on aluminum sheet of silica gel $60 \mathrm{~F}_{254}$, EMerk, Germany using iodine as visualizing agent .Melting points were determined in open capillary tubes on MelTemp apparatus and are uncorrected. Colum chromatography was performed on silica gel with different solvent systems as eluents to afford the pure compound. The IR spectra were recorded as KBr pellets on Perkin-Elmer 1000 unit, Instrument. All H^{1} and $\mathrm{C}^{13}-$ NMR . P^{31}-NMR spectra were recorded on a Varian XL-300MHz for $\mathrm{H}^{1}-\mathrm{NMR}$ and 75.46MHZ for C^{13}-NMR. P^{31}-NMR spectra were recorded ona Varian XL-spectrometer operating at 161.89 MHz . The compounds were dissolved in DMSO-d6 and Chemical shifts were referenced to TMS (H^{1} and $\mathrm{C}^{13}-$ NMR) and $85 \% \mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{p} 31-\mathrm{NMR})$. Mass spectral data was recorded on FAB-MS instrument at 70 ev with direct inlet system. Elemental analyses were recorded on Carlo Erba 1108 Elemental Analyses, Central Drug Research Institute, Lucknow, India.

Prepration of Intermediates:

(Phenyl carbamoyl) phosphoric acid dichloride ($8 a-g$)[28, 29]:
A solution of aniline $(0.51 \mathrm{~g}, 0.004 \mathrm{~mole})$ in dry toluene $(25 \mathrm{ml})$ was added drop wise to phosphide oxide $(6,0.64 \mathrm{~g}$, 0.004 mole) in dry toluene $(30 \mathrm{ml})$. After the addition, the temperature of the reaction mixture was maintained between -15 to $-5^{0} \mathrm{c}$ for 30 minutes. Later the temperature of the mixture was raised to room temperature, with stirring for 30 minutes .Phenyl carbomido phosphoric acid dichloride being insoluble in toluene was separated out .It was collected by filtration and dried under reduced pressure.

Similar treatment of 4-substituted Anilines / morpholine/piperidine/ N-methyl piperazine with dichloro isocyanato phosphine oxide in presence of dry toluene at -15 to $-5^{\circ} \mathrm{c}$ for 30 minutes offered the respective derivatives of 4substituted Phenyl /marphonylyl /piperidinyl/ N-methyl piperazenyl carbamido phosphoric acid dichloride.

RESULTS AND DISCUSSION

Typical Procedure for Synthesis of 2-(6, 6-dimethyl-4, and 8-dihydro-1H-[1, 3] dioxepino [5, 6-c] pyrazole-1-

 yl) acetic acid 3:A suspension of 1-H-pyrazole-4, 5-dimethanol (1Mmole) (1) was dissolved in acetone (5 ml) and 2, 2-dimethoxy propane (DMP, 2Mmole) solvent mixture. To the reaction mixture phosphotungstic acid (PTA, 5mole \%) was added. The reaction mixture was stirred at room temperature for 4 hours under argon atmosphere until the 1-H-pyrazole-4; 5-dimethanol (1) had dissolved. The progress of the reaction was monitored by TLC using cyclohexane and ethyl acetate ($9: 1$) solvent mixture as an eluent. After completion of the reaction, it was observed that the catalyst forms a gummy mass to stick on the wall inside the reaction flask. The solvent was decanted, dried under reduced pressure and the dried mass was re dissolved in dichloromethane (DCM). The dichloromethane solution was washed with water, dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and evaporated to get the crude product (2), which was recrystallized by dissolving in boiling ether $(5 \mathrm{ml} / \mathrm{g})$, cooling and then adding hexane $(5 \mathrm{ml} / \mathrm{g})$ to give the pure product (2) [30]

A mixture of 6, 6-dimethyl-4, 8-dihydro- 1 H - $\left[1,3\right.$] dioxepino [5, 6-c] pyrazole (2), anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}$ chloro acetic acid and dimethyl formamide (DMF) was stirred at room temperature for 8 hours. The progress of the reaction was monitored by TLC using cyclohexane and ethyl acetate (7:3) solvent mixture as an eluent. The reaction mixture was
diluted with ice cold water. The separated solid was identified as (3). This was collected by filtration and recrystallized from ethanol.

Scheme:1:synthetic route of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl) methyl))-6-nitro-1H-benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxy phenyl / 4-chloro phenyl) ureas (9a-j)

Compound 9	$9 a$	$9 b$	$9 c$	$9 d$	$9 e$	$9 f$	$9 g$	$9 h$	$9 i$	$9 j$
R	-H	$-\mathrm{CH}_{3}$	$-\mathrm{OCH}_{3}$	-Cl	-H	$-\mathrm{CH}_{3}$	-Cl	-H	$-\mathrm{CH}_{3}$	-Cl
X	O	O	O	O	-CH 2	-CH 2	-CH 2	$-\mathrm{N}^{2} \mathrm{CH}_{3}$	$-\mathrm{N}^{2} \mathrm{CH}_{3}$	$-\mathrm{N}^{2}-\mathrm{CH}_{3}$

Physical, analytical and spectral data for 2-(6, 6-dimethyl-4, 8-dihydro-1H-[1, 3] dioxepino [5, 6-c] pyrazole-1yl) acetic acid 3:
Yield:78\%; M.p: $166-168^{\circ} \mathrm{C}$; IR(KBr): $2950 \mathrm{~cm}^{-1}(-\mathrm{OH}), 2940$ and $2895 \mathrm{~cm}^{-1}$ (Aliphatic $\gamma_{\mathrm{C}-\mathrm{H}}$), $1690 \mathrm{~cm}^{-1}(>\mathrm{C}=\mathrm{O})$, $1375-1487 \mathrm{~cm}^{-1}$ (pyrazole ring); $\mathrm{H}^{1}-\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 1.27$ ($\mathrm{s}, 6 \mathrm{H}$, two geminial CH_{3} groups), 4.63 (s, 2 H , two CH_{2} groups of acetals), $5.10\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ of $-\mathrm{CH}_{2} \mathrm{COOH}$ group), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and 11.0 (s, $1 \mathrm{H},-\mathrm{COOH}$ group); Anal. calcd(\%) for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{O}_{4}$: C 53.09%, H 6.24% and $\mathrm{N} 12.38 \%$. Found: C 52.29%, H 5.74% and $\mathrm{N} 11.78 \%$.

Scheme:2: Synthetic route of N-(1-((1-morpholinomethyl)-1H-benzo[d]imidazol-2- yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazol-6-yl) morpholine/ piperadine/4-methyl piperazine carboxamides (9k-m)

| Compound 9 | $9 k$ | $9 l$ | $9 m$ |
| :---: | :---: | :---: | :---: | :--- |
| X | O | $-\mathrm{CH}_{2}$ | $-\mathrm{N}^{2}-\mathrm{CH}_{3}$ |

Typical Procedure for Synthesis of 6, 6-dimethyl-1-((6-nitro-1H-benzo[d]imidazol-2-yl) methyl-4, 8-dihydro$1 \mathrm{H}-[1,3]$-dioxepino [5, 6-c] pyrazole (5) [31, 32] :
A mixture of 0.1 mole 2-(6, 6-dimethyl-4, 8-dihydro-1H-[1, 3] dioxepino [5, 6-c] pyrazole-1-yl) acetic acid (3) and 0.1 mole 4 -nitrobenzene1, 2-diamine (4) was heated under reflux for 1.5 hours with stirring at $130^{\circ} \mathrm{C}$. The progress of the reaction was monitored by TLC using cyclohexane and ethyl acetate ($7: 3$) solvent mixture as an eluent. At the end of the reaction period, the mixture was taken in a 30 ml dichloromethane and neutralized with 50 ml 1 N NaOH solution, after neutralization the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The combined extract was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed with rotary evaporator. The residue was purified by column chromatography, using 60 mesh silica and CHCl_{3} solvent was used as an eluent. Finally the product 6, 6-dimethyl-1-((6-nitro-1H-benzo [d] imidazol-2-yl) methyl-4, 8-dihydro-1H-[1, 3]-dioxepino [5, 6-c] pyrazole (5) was purified from aqueous dimethyl formamide.

Physical, analytical and spectral data for 6, 6-dimethyl-1-((6-nitro-1H-benzo[d]imidazol-2-yl) methyl-4, 8-dihydro-1H-[1, 3]-dioxepino [5, 6-c] pyrazole (5) :
Yield:70\%; M.p: $152-154^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3460 \mathrm{~cm}^{-1}$ ($-\mathrm{NH}-$), $3052 \mathrm{~cm}^{-1} \quad$ (Ar-H), $2940 \& 2895 \mathrm{~cm}^{-1}$ (Aliphatic $\boldsymbol{\gamma}_{\mathrm{C}}$ н), $1390 \& 1365 \mathrm{~cm}^{-1}$ (benzimidazole ring), $1375-1487 \mathrm{~cm}^{-1}$ (pyrazole ring), $1360 \& 1380 \mathrm{~cm}^{-1}\left(-\mathrm{C}_{(}\left(\mathrm{CH}_{3}\right)_{2}\right) 1355$ \& $1330 \mathrm{~cm}^{-1}\left(-\mathrm{NO}_{2}\right)$ and $1140 \mathrm{~cm}^{1}(-\mathrm{C}-\mathrm{O}) ; \mathrm{H}^{1}-\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): ~ \delta 1.27\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two geminial CH_{3} groups), 4.63 (s, 2H, two CH_{2} groups of acetals), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), $5.0(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$ of benzimidazole ring), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and 7.66-8.39 ($\mathrm{m}, 3 \mathrm{H}$, of benzimidazole ring); Anal.calcd(\%) for $\mathrm{C}_{16} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{4}$: C 55.97%, H 4.99% and N 20.40%. Found: C $55.17 \%, \mathrm{H} \quad 4.49 \%$ and N 19.80%.

Typical Procedure for Synthesis of 6, 6-dimethyl-1-((6-nitro-1-((1-(piperidin-1-ylmethyl)/ (morpholino methyl) / (4-meth yl piperazin-1-ylmethyl)-1H-benzo[d]imidazol-2-yl) methyl)-4, 8-dihydro-1H-[1, 3] dioxepino [5, 6-c] pyrazole $\boldsymbol{\sigma}(a-c)$:
A mixture of 0.1 mole 6, 6-dimethyl-1-((6-nitro-1H-benzo[d]imidazol-2-yl) methyl-4, 8-dihydro-1H-[1, 3]dioxepino [5, 6-c] pyrazole (5), piperidine (0.15 mol) and water 20 ml was stirred to obtained a clear solution. To this solution, $\mathrm{HCHO}(0.05 \mathrm{~mol})$ and DMF were added in ice cold condition and stirred for 2 hours in an ice bath and left over night at room temperature. The progress of the reaction was monitored by TLC using cyclohexane and ethyl acetate ($7: 3$) solvent mixture as an eluent. At the end of the reaction, the mixture was taken in a 30 ml dichloromethane and neutralized with 50 ml 1 N NaOH solution, after neutralization the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{ml})$. The combined extract was dried on $\mathrm{Na}_{2} \mathrm{SO}_{4}$. After filtration, the solvent was removed with rota evaporator. The residue was purified by column chromatography, using $60-120$ mesh silica and CHCl_{3} solvent was used as an eluent. Finally the product compound 6,6- dimethyl-1- ((6 -nitro-1-((1-(piperidin-1-ylmethy) 1-1Hbenzo [d] imidazol-2-yl) methyl)-4,8-dihydro-1H-[1,3]-dioxepino[5,6-c] pyrazole ($\mathbf{6 a}$) was purified from aqueous dimethyl formamide. The similar procedure was adopted to synthesize $\boldsymbol{6}(\boldsymbol{b}-\boldsymbol{c})$ by condensing (5) with morpholine and N -methyl piperazine respectively. The compounds thus obtained were charecterised by their elemental analysis and spectral data (IR, $\mathrm{H}^{1}-\mathrm{NMR}$).

Physical, analytical and spectral data for the compounds $\boldsymbol{\sigma}(a-c)$:

6,6-dimethyl-1-((1-(morpholinomethyl)6-nitro-1H-benzo[d]imidazole-2-yl)methyl-4,8dihydro-1H-[1,3] dioxepino [5,6-c]pyrazole6(a):
Yield: 75%; M.p: $160-162^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr})$: $3040\left(\gamma_{\mathrm{Ar}-\mathrm{H}}\right), 2940 \& 2895$ (Aliphatic $\gamma_{\mathrm{C}-\mathrm{H}}$), 1390 \& 1365 (benzimidazole ring), 1375-1487(pyrazole ring), $1355 \& 1330\left(-\mathrm{NO}_{2}\right)$ and $1145 \mathrm{~cm}^{1}\left(\gamma_{\mathrm{C}-\mathrm{o}}\right) . \mathrm{H}^{1}$-NMR($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 1.27$ $\left(\mathrm{s}, 6 \mathrm{H}\right.$, two geminial CH_{3} groups) , $2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}\right.$ of morpholine ring $\mathrm{J}=7.5 \mathrm{~Hz} \mathrm{H}-2^{\mathrm{L}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 3.65(\mathrm{t}$, $4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}$ of morpholine ring $\mathrm{J}=7.5 \mathrm{~Hz} \mathrm{H}-3^{1}$ and $\mathrm{H}-2^{\mathrm{L}}$), 4.63 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups of acetals), 4.80 ($\mathrm{s}, 2 \mathrm{H}$, $-\mathrm{N}_{-} \mathrm{CH}_{2}-\mathrm{N}$ - of morpholine ring), 4.99 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}$-benz Imidazole ring), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and $7.66-$ 8.19 (m, 3H, of benzimidazole ring); Anal.calcd(\%) for $\mathrm{C}_{21} \mathrm{H}_{26} \mathrm{~N}_{6} \mathrm{O}_{5}$: C $57.00 \%, \mathrm{H} 5.92 \%, \mathrm{~N} 18.99 \%$.Found: C 56.20%, $\mathrm{H} 5.42 \%, \mathrm{~N} 18.39 \%$.

6,6-dimethyl-1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazole-2-yl)methyl-4,8dihydro-1H-[1,3] dioxepino[5,6-c]pyrazole(b):
Yield: 70%; M.p: $173-175^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3052 \mathrm{~cm}^{1}\left(\boldsymbol{\gamma}_{\text {Ar-H }}\right), 2940 \& 2895 \mathrm{~cm}^{1}$ (Aliphatic $\boldsymbol{\gamma}_{\mathrm{C}-\mathrm{H}}$), 1395\& $1365 \mathrm{~cm}^{1}$ (benzimidazole ring), $1375-1487 \mathrm{~cm}^{1}$ (pyrazole ring), $1355 \& 1330 \mathrm{~cm}^{1}\left(\boldsymbol{\gamma}_{-\mathrm{NO} 2}\right), 1140 \mathrm{~cm}^{1}\left(\boldsymbol{\gamma}_{\mathrm{C}-\mathrm{O}}\right) ; \mathrm{H}^{1}$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 1.27\left(\mathrm{~s}, 6 \mathrm{H}\right.$, two geminial CH_{3} groups) , 1.53-2.45 (m, $10 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{5}$ of piperidine ring), 4.63 (s, 4H, two CH_{2} groups of acetals)
$4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ - group flanked between pyrazole and benzimidazole ring), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and 7.66-8.19 ($\mathrm{m}, 3 \mathrm{H}$, of benzimidazole ring);); Anal.calcd(\%) for $\mathrm{C}_{22} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{4}$: C 59.99%, H 6.41%,N 19.08%. Found: C: 59.19%, H: $5.91 \% \mathrm{~N}: 18.68 \%$.

6,6-dimethyl-1-((1-(morpholinomethyl)6-nitro-1H-benzo[d]imidazole-2-yl)methyl-4,8dihydro-1H-[1,3]dioxepino [5,6-c]pyrazole6(c):
Yield: 70%; M.p: $185-187^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3035 \mathrm{~cm}^{1}\left(\boldsymbol{\gamma}_{\text {Ar-H }}\right), 2940 \& 2895 \mathrm{~cm}^{1}$ (Aliphatic $\left.\gamma_{\mathrm{C}-\mathrm{H}}\right), 1398 \& 1370 \mathrm{~cm}^{1}$ (benzimidazole ring),1375-1487 $\mathrm{cm}^{1} \quad$ (pyrazole ring), $1355 \& 1330 \mathrm{~cm}^{1}\left(\boldsymbol{\gamma}_{\text {-NO2 }}\right), 1148 \mathrm{~cm}^{1}\left(\gamma_{\mathrm{C}-\mathrm{O}}\right) ; \mathrm{H}^{1}-$ NMR(300 Hz ,DMSO-d6): $\delta 1.27$ ($\mathrm{s}, 6 \mathrm{H}$, two geminial CH_{3} groups), 2.26 ($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$ group attached to piperazine ring), $2.35\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right.$ of piperazine ring), $4.63\left(\mathrm{~s}, 4 \mathrm{H}\right.$, two CH_{2} groups of acetals $), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and N-methyl piperazine ring), 4.99 (s, $2 \mathrm{H},-\mathrm{CH}_{2}$ - group flanked between pyrazole and benzimidazole ring), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and $7.66-8.19(\mathrm{~m}, 3 \mathrm{H}$, of benzimidazole ring); Anal.calcd(\%) for $\mathrm{C}_{22} \mathrm{H}_{29} \mathrm{~N}_{7} \mathrm{O}_{4}$: C $58.01 \%, \mathrm{H} 6.42 \%$, $\mathrm{N} 21.52 \%$. Found: C $57.21 \%, \mathrm{H} 5.92 \%, \mathrm{~N} 20.92 \%$.

Typical Procedure for Synthesis of1-((1- (piperidin-1-ylmethyl) / (1-morpholinomethyl) / (4-methylpiperazin-1-yl methyl)-6 -nitro-1H-benzo[d]imidazol-2-yl) methyl)-1H-pyrazole-4, 5-diyl) dimethanol 7(a-c):
The isopropylidenation of 1,2 -diols was carried out by a procedure as reported in the literature ${ }^{29}$. A suspension of the 6,6- dimethyl-1- ((6-nitro-1-((1-(piperidin-1-ylmethy) 1-1H-benzo [d] imidazol-2-yl) methyl)-4,8-dihydro-1H-[1,3]-dioxepino[5,6-c] pyrazole ($6 \boldsymbol{a}$) (1 m mol) in dry acetone and to this $5 \mathrm{~mol} \%$ of phosphotungstic acid was added and the reaction mixture was stirred at room temperature under nitrogen atmosphere for 1 hour The progress of the reaction was monitored by TLC using cyclohexane and ethyl acetate (7:3) solvent mixture as an eluent. After completion of the reaction, the solvent was removed under reduced pressure. The residue was extracted with dichloromethane ($3 \times 20 \mathrm{ml}$) and water and the combined organic layer was dried with $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuum to give the crude product. The crude product was purified by column chromatography on silica gel (60-120 mesh) with $15-30 \%$ ethyl acetate in cyclohexane as an eluent. The similar procedure was adopted to synthesise $7 \boldsymbol{b}$ \& $7 \boldsymbol{c}$ from $\boldsymbol{\sigma} \boldsymbol{b} \& \boldsymbol{\sigma} \boldsymbol{c}$. The compounds thus obtained were charecterised by their elemental analysis and spectral data (IR, $\left.\mathrm{H}^{1}-\mathrm{NMR}\right)$.

Physical, analytical and spectral data for the compounds 7(a-c):
1-((1-morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-1H-pyrazole-4,5-diyl) dimethanol(7a): Yield:65\%; M.p: $149-151^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3520\left(\gamma_{\text {O-H }}\right), 3040\left(\gamma_{\text {Ar-H }}\right), 2940$ \& 2895(Aliphatic $\left.\gamma_{\mathrm{C}-\mathrm{H}}\right), 1385$ \& 1365(Benzimidazolering), 1375-1487(pyrazole ring), $1355 \& 1330\left(\boldsymbol{\gamma}_{\text {- }}{ }^{2}\right.$) , $1145\left(\gamma_{\text {C-o }}\right) ; \mathrm{H}^{1}-\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-$ d6): $\delta 2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}\right.$ of morpholine ring $\mathrm{J}=7.2 \mathrm{~Hz} \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 3.65\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH}_{2}\right.$ of morpholine ring $\mathrm{J}=7.2 \mathrm{~Hz} \mathrm{H}-3^{\mathrm{I}}$ and $\mathrm{H}-2^{\mathrm{I}}$), $3.65\left(\mathrm{~s}, 2 \mathrm{H}\right.$, two -OH groups having Intramolecular H -bonding), $4.61\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.79\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}_{-}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and morpholine ring), 4.99 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}-$ group flanked between pyrazole and benzimidazole ring),
$7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring) and 7.66-8.19 (m, 3H, of benzimidazole ring); Anal.calcd(\%) for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5}$: C 53.73%,H 5.51%, N 20.88%. Found: C 52.93%, H 5.01\%, and N 20.28%.

1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazole-2-yl)methyl)-1H-pyrazole-4,5-diyl)dimethanol7(b): Yield:75\%; M.p: $162-164^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3520\left(\gamma_{\text {o-H }}\right), 3040\left(\gamma_{\text {Ar-H }}\right), 2940 \& 2895\left(\right.$ Aliphatic $\left.\gamma_{\text {C-H }}\right), 1385 \& 1365$ (Benzimidazolering), 1375-1487(pyrazole ring), $1355 \& 1330\left(\boldsymbol{\gamma}_{-\mathrm{NO} 2}\right), 1145\left(\gamma_{\mathrm{c}-\mathrm{o}}\right) ; \mathrm{H}^{1}-\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta$ 1.53-2.45 (m, 10H, $\left(\mathrm{CH}_{2}\right)_{5}$ of piperidine ring), $3.65(\mathrm{~s}, 2 \mathrm{H}$, two -OH groups having Intramolecular H-bonding), $4.61\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.79\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}^{2}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ - group flanked between pyrazole and benzimidazole ring), $7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring) and $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); Anal.calcd(\%) for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{~N}_{6} \mathrm{O}_{5}$: C 56.99%, H 6.04%,N 20.99 .Found: C 56.18%, H 5.54% N 20.39%.
(1-((1-((4-methylpiperazin-1-yl)methyl)-6-nitro-1H-benzo[d]imidazole-2-yl)methyl-1H-pyrazole-4,5-diyl)dimethanol7(c):
Yield: 70%; M.p: $166-168^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3520\left(\gamma_{\mathrm{OH}}\right), 3035\left(\gamma_{\text {Ar-H }}\right), 2940$ \& 2895 (Aliphatic $\left.\gamma_{\mathrm{C}-\mathrm{H}}\right), 1385$ \& 1365 (Benzimidazolering), 1375-1487(pyrazole ring), $1355 \& 1330\left(\gamma_{-\mathrm{NO} 2}\right), 1148\left(\gamma_{\mathrm{C}-\mathrm{O}}\right) ; \mathrm{H}^{1}-\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta$ $2.26\left(\mathrm{~s}, 3 \mathrm{H},-\mathrm{CH}_{3}\right.$ group attached to piperazine ring), $2.35\left(\mathrm{~m}, 8 \mathrm{H},\left(\mathrm{CH}_{2}\right)_{4}\right.$ of piperazine ring), $3.65(\mathrm{~s}, 2 \mathrm{H}$, two -OH groups having Intramolecular H-bonding), $4.61\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.79\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ group of dimethanol), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and N -methyl piperazine ring), $4.99(\mathrm{~s}, 2 \mathrm{H},-$ CH_{2} - group flanked between pyrazole and benzimidazole ring), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and $7.66-8.19(\mathrm{~m}$, 3 H , of benzimidazole ring; Anal.calcd $(\%)$ for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{7} \mathrm{O}_{4}$: C $54.93 \%, \mathrm{H} 6.07 \%, \mathrm{~N} 23.60 \%$.

Typical Procedure for Synthesis of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl)methyl))-6-nitro-1H-benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2] dioxaphosphepino[5,6c] pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxy phenyl / 4-chloro phenyl) ureas (9a-j):
A solution of (phenylcarbamoyl)phosphoramidic dichloride (8a) (0.002 mole) in 25 ml of dry toluene was added drop wise over a period of 20 minutes to a stirred solution of 1-((1-morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-1H-pyrazole-4,5-diyl)dimethanol (7a) (0.002 mole) and triethylamine (0.004 mole) in 30 ml of dry toluene and 10 ml of tetrahydrofuran at $5^{\circ} \mathrm{c}$. After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and stirred for 2 hours. Later the reaction mixture was heated to $50-60^{\circ} \mathrm{C}$ and maintained for 4 hours with stirring. The completion of the reaction was monitored by TLC analysis. Triethyl amine hydrochloric acid was filtered from mixture and solvent was removed under reduced pressure. The residue was washed with water and then recrystallized from aqueous 2-propanol to get pure compound of 1-1-((1-(morpholino methyl)-6-nitro-1H-bezo[d] imidazole-2-yl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazol-6-yl)-3-phenylurea (9a).The similar procedure was adopted to synthesise $9 \mathrm{~b}-\mathrm{d}$ by the reaction between 7 a with p-tolyl carbamoyl phosphoramidic dichloride ($8 \boldsymbol{b}$), 4-methoxy phenyl carbamoyl phosphoramidic dichloride (8 c), and 4-chloro phenyl carbamoyl phosphoramidic dichloride (8 d).

The reaction between 7 b with phenylcarbamoyl) phosphoramidic dichloride (8 a), p-tolyl carbamoyl phosphoramidic dichloride ($8 \boldsymbol{b}$) and 4-chloro phenyl carbamoyl phosphoramidic dichloride ($8 \boldsymbol{d}$) afforded $\mathbf{9 e - g}$. The similar procedure was adapted to synthesis $9 h-j$ from $7 c$ and $8 a / 8 b / 8 d$ respectively.. The compounds thus obtained were charecterised by their elemental analysis and spectral data (IR, $\mathrm{H}^{1}-\mathrm{NMR}, \mathrm{P}^{31}-\mathrm{NMR}, \mathrm{C}^{13}-\mathrm{NMR}$ and Mass).

Physical, analytical and spectral data for the compounds $9(a-j)$:
1-(1-((1-morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphos pheno[5,6-c]pyrazol-6-yl)-3-phenylurea9(a):
Yield:65\%; M.p:168-17 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr})$: 3317($\gamma \mathrm{p}-\mathrm{NH}$),3052(Ar-H), 2940\&2895(Aliphatic C-H), 1656 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355\&1330 (-NO $)^{2}$, $1300(\mathrm{C}-\mathrm{O}), 1250(\mathrm{P}=\mathrm{O}), 954(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$ attached to nitrogen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\mathrm{H}-3^{\mathrm{I}}$), $3.65\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$ - attached to oxygen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-3^{\mathrm{I}}$ and $\left.\mathrm{H}-2^{\mathrm{I}}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}^{2}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and morpholine ring), 4.99 ($\mathrm{s}, 2 \mathrm{H}$, pyrazole and between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring), 7.19-7.61 ($\mathrm{m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}$ attached to urea moiety) and 7.66-8.19 ($\mathrm{m}, 3 \mathrm{H}$, of benzimidazole ring) $; \mathrm{C}^{13}$ NMR (75.46NHz, DMSo-d6): $\delta 135.2$, $118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7$, $135.1,148.3,75.7,53.5,66.4,152.0,139.4,121.6,128.9$ and 128.0 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$, $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21} \& \mathrm{C}_{25}, \mathrm{C}_{22} \& \mathrm{C}_{24}$ and C_{23};

${ }^{31} \mathrm{PNMR}(161.89 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 11.20,1.36$; Anal.calcd(\%) $\mathrm{C}_{25} \mathrm{H}_{27} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{P}: \mathrm{C} 51.55 \%, \mathrm{H} 4.67 \%, \mathrm{~N} 19.24 \%$, P 5.32\%.Found: C:50.75\%, H 4.17\%, N 18.84, P 4.62\%.

1-(1-((1-morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphos

 pheno[5,6-c]pyrazol-6-yl)-3-(p-tolyl)urea9(b):Yield:70\%; M.p: $146-148^{\mathrm{O}} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3320(\gamma \mathrm{p}-\underline{\mathrm{NH}}), 3055(\mathrm{Ar}-\mathrm{H}), 2940 \& 2895($ Aliphatic C-H), 1660 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1245(\mathrm{P}=\mathrm{O}), 950(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR $(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ group attached to phenyl urea), $2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$ attached to nitrogen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 3.65\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$ - attached to oxygen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H-}$ 3^{I} and $\mathrm{H}-2^{\mathrm{I}}$), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and morpholine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety $), 6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety $), 7.21-7.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): \delta 135.2,118.0$, $141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.7,53.5,66.4,152.0,136.4$, $121.5,129.2,136.8$ and 21.3 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}$, $\mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21} \& \mathrm{C}_{25}, \mathrm{C}_{22} \& \mathrm{C}_{24}, \mathrm{C}_{23}$ and $\mathrm{C}_{26} ;{ }^{31}$ PNMR(161.89MHz,DMSO-d6): $\delta-$ 11.53; Anal.calcd(\%) $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{7} \mathrm{P}$ for : $\mathrm{C}: 52.35 \%$, $\mathrm{H}: 4.90 \%$, $\mathrm{N} 18.7, \mathrm{P} 5.9 \%$. Found: C: 51.55\%, H: $4.40 \%, \mathrm{~N}$ 18.18, P 6.49%.

1-(4-methoxyphenyl)-3-(1-((1-morpholinomethyl)-6-nitro-1H-benzo[d] imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphospheno[5,6-c]pyrazol-6-yl)-urea9(C):

Yield:70\%; M.p: $154-156^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3325(\gamma \mathrm{p}-\mathrm{NH}), 3065$ (Ar-H), 2940\&2895(Aliphatic C-H), 1665 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1254(\mathrm{P}=\mathrm{O}), 958(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ $\mathrm{NMR}(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 3.83(\mathrm{~s}, 3 \mathrm{H}$, methoxy group $), 2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$ - attached to nitrogen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\mathrm{H}-3^{\mathrm{I}}$), $3.65\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\right.$ attached to oxygen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-3^{\mathrm{I}}$ and $\mathrm{H}-2^{\mathrm{I}}$), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}_{-} \mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and morpholine ring) , $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring) , 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}\right.$ - of urea moiety), $6.97-7.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring) and $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): \delta 135.2,118.0,141.0,61.8,60.7$, $48.9,145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.7,53.5,66.4,152.0,131.7,119.8,114.5,158.9$, and 55.8 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21} \& \mathrm{C}_{25}, \mathrm{C}_{22}$ $\& \mathrm{C}_{24}, \mathrm{C}_{23}$, and $\mathrm{C}_{26}{ }^{31}{ }^{1} \mathrm{PNMR}(161.89 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6): \delta-11.48 ;$ Anal.calcd(\%) $\mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{P}: \mathrm{C}: 50.98 \%, \mathrm{H}: 4.77 \%, \mathrm{~N}$ 18.29%, $\mathrm{P} 5.06 \%$.

1-(4-chlorophenyl)-3-(1-((1-morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphospheno[5,6-c]pyrazol-6-yl)-urea9(d)
Yield:70\%; M.p: $172-174^{\mathrm{O}} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3330(\gamma \mathrm{p}-\underline{\mathrm{NH}}), 3067$ (Ar-H), 2940\&2895(Aliphatic C-H), $1670(\mathrm{NH}-\mathrm{CO})$ 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1256(\mathrm{P}=\mathrm{O}), 956(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR (300Hz,DMSO-d6): $\delta 2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}{ }^{-}\right.$attached to nitrogen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right)$, $3.65\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}\right.$ - attached to oxygen of morpholine ring, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-3^{\mathrm{I}}$ and $\left.\mathrm{H}-2^{\mathrm{I}}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between Benzimidazole and morpholine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), $5.29\left(\mathrm{~s}, 4 \mathrm{H}\right.$, two CH_{2} groups attached to phosphorus moiety $), 6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}$ - of urea moiety), $7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring), 7.47-7.75 ($\mathrm{m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}$ attached to urea moiety) and $7.66-8.19(\mathrm{~m}, 3 \mathrm{H}$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): ~ \delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1$, $118.6,144.3,106.7,135.1,148.3,75.7,53.5,66.4,152.0,137.5,120.8,129.0$ and 133.3 corresponding to C_{1}, $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21} \& \mathrm{C}_{25}, \mathrm{C}_{22} \& \mathrm{C}_{24}$ and $\mathrm{C}_{23} ;{ }^{31} \mathrm{PNMR}\left(161.89 \mathrm{MHz}\right.$, DMSO-d6): δ-9.23,; Anal.calcd $(\%) \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{P} \mathrm{C} 48.67 \%, \mathrm{H} 4.25 \%, \mathrm{Cl} 5.75 \%, \mathrm{~N}$ 18.16%, P 5.02\%.Found: C $47.87 \%, \mathrm{H} 3.75 \%$, Cl 5.05%, N $17.56 \%, \mathrm{P} 4.32 \%$.

1-(1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxa phospheno[5,6-c]pyrazol-6-yl)-3-phenylurea9(e):
Yield: 70%; M.p: $139-141^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3315(\gamma \mathrm{p}-\underline{\mathrm{NH}), 3069(\mathrm{Ar}-\mathrm{H}), 2940 \& 2895(\text { Aliphatic C-H), } 1655(\mathrm{NH}-\mathrm{CO}) ~}$ 1390\&1365 (Benzimidazole), 1375-487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1259(\mathrm{P}=\mathrm{O}), 961(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR $(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): \delta 1.53-2.45\left(\mathrm{~m}, 10 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{5}\right.$ of piperidine ring), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}-\right.$ flanked between

Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety), $7.19-7.61(\mathrm{~m}, 5 \mathrm{H}$, $\mathrm{C}_{6} \mathrm{H}_{5}$ attached to urea moiety), $7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring), $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring; $\mathrm{C}^{13}-\mathrm{NMR}$ $(75.46 \mathrm{NHz}$, DMSo-d6): $\delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1$, $148.3,75.7,54.5,25.6,24.5,150.2,139.4,121.6,128.9$ and 128.0 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}$ $, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}, \& \mathrm{C}_{19}, \mathrm{C}_{16} \& \mathrm{C}_{18,}, \mathrm{C}_{17}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}$, and C_{24}; ${ }^{31}$ PNMR(161.89MHz,DMSO-d6): $\delta-11.50,1.45$; Anal.calcd $(\%) \mathrm{C}_{26} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 53.79 \%$,H 5.04%, $\mathrm{N} 19.30 \%$, P 5.34\%.Found: C 52.99%,H 4.54%,N 18.70%, P 4.64%.

1-(1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxa

 phospheno[5,6-c]pyrazol-6-yl)-3-(p-tolyl)urea9(f):Yield:70\%; M.p: $158-160^{\circ} \mathrm{C}$; IR(KBr): 3324 ($\gamma \mathrm{p}-\mathrm{NH}$), 3070 (Ar-H), 2940\&2895(Aliphatic C-H), 1658 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355 \& $1330\left(-\mathrm{NO}_{2}\right)$, 1300 (C-O), 1256 (P=O), 964 (P-O); $\mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 1.53-2.45\left(\mathrm{~m}, 10 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{5}\right.$ of piperidine ring), $2.34\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ group attached to phenyl urea), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}\right.$ - of urea moiety), $7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring), $7.21-7.56\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety), 7.668.19(m, 3 H , of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): ~ \delta 135.2,118.0,141.0,61.8,60.7,48.9$, $145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.7,54.5,25.6,24.5,150.2,136.4,121.5,129.5,136.8$ and 21.3 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{19}, \mathrm{C}_{16} \& \mathrm{C}_{18}, \mathrm{C}_{17}$, $\mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}, \mathrm{C}^{24}$ and $\mathrm{C}_{27} ;{ }^{31} \mathrm{PNMR}(161.89 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6):-11.75$; Anal.calcd $(\%) \mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 54.54 \%, \mathrm{H} 5.26 \%, \mathrm{~N} 18.85 \%$, P 5.21%. Found:C 53.74%, H 4.76%, N 18.25%, P 4.51%.

1-(4-chlorophenyl)-3-(1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphospheno[5,6-c]pyrazol-6-yl)urea9(g):
Yield: 75\%; M.p: 183-18 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3328$ ($\gamma \mathrm{p}-\mathrm{NH}$), 3075 (Ar-H), 2940\&2895(Aliphatic C-H), 1668 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355-1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1258(\mathrm{P}=\mathrm{O}), 966(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR $(300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6): ~ \delta 1.53-2.45\left(\mathrm{~m}, 10 \mathrm{H},-\left(\mathrm{CH}_{2}\right)_{5}\right.$ of piperidine ring), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{C} \mathrm{H}_{2}\right.$ - group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring), $7.47-7.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety), $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}$ (75.46 NHz , DMSo-d6): $\delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1$, $148.3,75.7,54.5,25.6,24.5,150.2,137.5,120.8,129.0$ and 133.3 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}$, $\mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{19}, \mathrm{C}_{16} \& \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}$ and C_{24}; ${ }^{31}$ PNMR(161.89MHz,DMSO-d6): -10.52; Anal.calcd($\%$) $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{ClN}_{8} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 50.78 \%, \mathrm{H} 4.59 \%, \mathrm{Cl} 5.76 \%, \mathrm{~N}$ 18.22%, P 5.04\%.Found: C 49.98%, H 4.09%, Cl $5.06 \%, \mathrm{~N} 17.62 \%$, P 4.34%.

1-(1-((1-((4-methylpiperazin-1-yl)methyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2] dioxaphospheno[5,6-c]pyrazol-6-yl)-3-phenylurea9(h):
Yield: 75%; M.p: $170-17^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}): 3320(\gamma \mathrm{p}-\mathrm{NH}), 3062$ (Ar-H), 2940\&2895(Aliphatic C-H), 1656 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355 \& $1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1254$ (P=O), 968 (P-O); $\mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ attached to piperazine ring), $2.35(\mathrm{~m}, 8 \mathrm{H},-(\mathrm{CH} 2) 4$ of piperazine ring), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and N -methyl piperazine ring,), 4.99 (s, $2 \mathrm{H},-\mathrm{CH}_{2}-$ group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}\right.$ - of urea moiety), $7.19-7.61\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ attached to urea moiety), 7.30 ($\mathrm{s}, 1 \mathrm{H}$, of pyrazole ring), $7.19-$ $7.61\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ attached to urea moiety), $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$,of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-$ d6): $\delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.4,52.5,57.3$, $46.6,150.2,139.4,121.6,128.9$ and 128.0 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$, $\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}$ and C_{24}; ${ }^{31}$ PNMR(161.89MHz,DMSO-d6): -12.15, 1.65;Anal.calcd(\%) $\mathrm{C}_{27} \mathrm{H}_{31} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{P}$: C $52.44 \%, \mathrm{H} 5.08 \%, \mathrm{~N} 21.17 \%, \mathrm{P}$ 5.20%.Found: C 51.84%, H 4.58%,N 20.57%, P 4.50%.

1-(1-((1-((4-methylpiperazin-1-yl)methyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2] dioxaphospheno[5,6-c]pyrazol-6-yl)-3-(p-tolyl)urea9(i):
Yield: 70\%; M.p: $162-164^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3318(\gamma \mathrm{p}-\mathrm{NH}), 3050$ (Ar-H), 2940\&2895(Aliphatic C-H), 1658 (NH-CO) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1250(\mathrm{P}=\mathrm{O}), 963(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR(300 Hz ,DMSO-d6): $\delta 2.26$ (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ attached to piperazine ring), 2.34 (s, $3 \mathrm{H}, \mathrm{CH}_{3}$ group attached to phenyl urea), $2.35\left(\mathrm{~m}, 8 \mathrm{H},-(\mathrm{CH} 2) 4\right.$ of piperazine ring), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and N -methyl piperazine ring), 4.99 (s, $2 \mathrm{H},-\mathrm{CH}_{2}$ - group flanked between pyrazole and benzimidazole ring), $5.29\left(\mathrm{~s}, 4 \mathrm{H}\right.$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety $), 7.21-7.51\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety), 7.30 (s, 1 H , of pyrazole ring), $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}$ (75.46 NHz , DMSo-d6): $\delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.4,52.5,57.3,46.6$ $, 150.2,136.4,121.5,129.5,136.8$ and 21.3 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$, $\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}, \mathrm{C}_{24}$ and $\mathrm{C}_{27} ;$ ${ }^{31}$ PNMR(161.89MHz,DMSO-d6): -10.75; Anal.calcd(\%) $\mathrm{C}_{27} \mathrm{H}_{32} \mathrm{~N}_{9} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 53.20 \%$, H 5.29%, N 20.68%, p 5.08 .Found: C 52.40%,H 4.79%,N 20.08%, P 4.38%.

1-(4-chlorophenyl)-3-(1-((1-((4-methylpiperazin-1-yl)methyl)-6-nitro-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihyro-1H-[1,3,2]dioxaphospheno[5,6-c]pyrazol-6-yl)urea9(J)
Yield: 75%; M.p: $158-160^{\circ} \mathrm{C} ; \mathrm{IR}(\mathrm{KBr}): 3328$ ($\gamma \mathrm{p}-\underline{\mathrm{NH}), 3055(\mathrm{Ar}-\mathrm{H}), 2940 \& 2895(\text { Aliphatic C-H), } 1665 \text { (NH-CO) }) ~}$ 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), $1355 \& 1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1256(\mathrm{P}=\mathrm{O}), 967(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 2.26\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right.$ attached to piperazine ring), $2.35(\mathrm{~m}, 8 \mathrm{H},-(\mathrm{CH} 2) 4$ of piperazine ring), $4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and N -methyl piperazine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}-\right.$ group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached toPhosphorus moiety), $6.15\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}\right.$ - of urea moiety), $7.30\left(\mathrm{~s}, 1 \mathrm{H}\right.$, of pyrazole ring), $7.47-7.75\left(\mathrm{~m}, 4 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{4}\right.$ attached to urea moiety) ,7.66$8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): ~ \delta 135.2,118.0,141.0,61.8,60.7,48.9$, $145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.4,52.5,57.3,46.6,150.2,137.5,120.8,129.0$ and 133.3 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$ \& $\mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}$, $\mathrm{C}_{20}, \mathrm{C}_{21}, \mathrm{C}_{22} \& \mathrm{C}_{26}, \mathrm{C}_{23} \& \mathrm{C}_{25}$ and $\mathrm{C}_{24} ;{ }^{31}$ PNMR(161.89MHz,DMSO-d6): -10.75; Anal.calcd $(\%) \mathrm{C}_{26} \mathrm{H}_{29}$ $\mathrm{ClN}_{9} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} \quad 49.57 \%, \mathrm{H} \quad 4.64 \%, \mathrm{Cl} 5.63 \%, \mathrm{~N} \quad 20.01 \%, \mathrm{P} \quad 4.92 \%$. Found: C $48.77 \%, \mathrm{H} 4.14 \%, \mathrm{Cl} 4.93 \%$, N 19.41%, P 4.22%.

Typical Procedure for Synthesis of N-(1-((1-morpholinomethyl)-1H-benzo[d]imidazol-2-yl)methyl)-6-oxido- , 8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazol-6-yl)morpholine/piperadine/4-methylpiperazine carboxamides $(9 k-m)$:
A solution of Morpholino carbamoyl phosphoramidic dichloride(8e) (0.002 mole) in 25 ml of dry toluene was added drop wise over a period of 20 minutes to a stirred solution of 1-((1-morpholino methyl)-6-nitro -1H-benzo[d]imidazol-2-yl)methyl)-1 H-pyrazole-4,5-diyl) dimethanol7(a)(0.002mole)andtriethylamine(0.004 mole) in 30 ml of dry toluene and 10 ml of tetrahydrofuran at $5^{0} \mathrm{c}$. After completion of the addition, the temperature of the reaction mixture was slowly raised to room temperature and stirred for 2 hours. Later the reaction mixture was heated to $50-60^{\circ} \mathrm{C}$ and maintained for 4 hours with stirring. The completion of the reaction was monitored by TLC analysis. Trimethyl amine hydrochloric acid was filtered from mixture and solvent was removed under reduced pressure. The residue was washed with water and then recrystallized from aqueous 2-propanol to get pure compound of N -(1-((1-(morpholino methyl)-6-nitro-1H-bezo[d]imidazol-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazol-6-ylmorpholine-4-carboxamide (9k).

The similar procedure was adopted to synthesize 91 and 9 m by the reaction between $7 \boldsymbol{b}$ and $7 \boldsymbol{c}$ with (piperidine-1carbonyl) phosphoramidic dichloride $8(f)$ and 4-methyl piperazine-1-carbamoyl phosphoramidic dichloride $8(\boldsymbol{g})$ respectively. The structures of $91-\mathrm{m}$ were established by IR, ${ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, mass data and elemental analysis. The compounds thus obtained were charecterised by their elemental analysis and spectral data (IR, $\mathrm{H}^{1}-\mathrm{NMR}, \mathrm{P}^{31}$ NMR, $C^{13}-$ NMR and Mass).

Physical, analytical and spectral data for the compounds 9(k-m):
N-1-((1-(morpholinomethyl)-6-nitro-1H-benzo[d]imidazol-2-yl)-6-oxido-4,8-dihydro-1H-[1,3,2] dioxaphosphepino [5,6-c]pyrazol-6-yl)morpholine-4-carboxamide9(K):
Yield: 70\%; M.p: 184-186 ${ }^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3317$ ($\gamma \mathrm{p}-\mathrm{NH}$), 3052 (Ar-H), 2940\&2895(Aliphatic C-H), 1656 (-CO-N<) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355 \& $1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1250(\mathrm{P}=\mathrm{O}), 954$ ($\mathrm{P}-\mathrm{O}$); $\mathrm{H}^{1}-$

NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 2.50\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}_{-}-\mathrm{CH}_{2}\right.$ of morpholine ring attached to benzimidazole ring, $\mathrm{J}=7.1$ $\mathrm{Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 3.31\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}\right.$ - of morpholine ring attached to carbamido moiety, $\mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right),\left(3.65\left(\mathrm{t}, 8 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{O}-\mathrm{CH} 2-\right.\right.$ group of two morpholine rings, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-3^{\mathrm{I}}$ and $\left.\mathrm{H}-2^{\mathrm{I}}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ flanked between Benzimidazole and morpholine ring), 4.99 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}$ - group flanked between pyrazole and benzimidazole ring), $5.29\left(\mathrm{~s}, 4 \mathrm{H}\right.$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}-$ of urea moiety), 7.30 ($\mathrm{s}, 1 \mathrm{H}$, of pyrazole ring), and $7.66-8.19\left(\mathrm{~m}, 3 \mathrm{H}\right.$, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}$, DMSo-d6): $\delta 135.2,118.0,141.0,61.8,60.7,48.9,145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.7$, $53.5,66.4,158.5,46.3$ and 65.7 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}$, $\mathrm{C}_{15} \& \mathrm{C}_{18}, \mathrm{C}{ }_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}, \mathrm{C}_{20} \& \mathrm{C}_{23}$ and $\mathrm{C}_{21} \& \mathrm{C}_{22} ;{ }^{31} \operatorname{PNMR}(161.89 \mathrm{MHz}$, DMSO-d6): -7.15; Anal.calcd(\%) $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{~N}_{8} \mathrm{O}_{8} \mathrm{P}: \mathrm{C} 47.92 \%$, H 5.07%, N 19.44%, P 5.37\%. Found: C 47.12%, H 4.57\%, N 18.84%, and P 4.67%.

N-(1-((6-nitro-1-(piperidine-1-ylmethyl)-1H-benzo[d]imidazol-2-yl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphos phepino[5,6-c]pyrazol-6-yl)piperidine-1-carboxamide9(l):
Yield: 70\%; M.p: $172-174^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}): 3315$ ($\gamma \mathrm{p}-\mathrm{NH}$), 3055 (Ar-H), 2940\&2895(Aliphatic C-H), 1655 (-CO-N<) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355 \& $1330\left(-\mathrm{NO}_{2}\right), 1300(\mathrm{C}-\mathrm{O}), 1245(\mathrm{P}=\mathrm{O}), 950(\mathrm{P}-\mathrm{O}) ; \mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 1.53-1.592(\mathrm{~m}, 12 \mathrm{H}, 3-(\mathrm{CH} 2)$ - groups of two piperidine rings $) 2.45\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}-\mathrm{CH}_{2}\right.$ of piperidine ring attached to Benzimidazole, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-2^{1}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 3.77(\mathrm{t}, 4 \mathrm{H}, \mathrm{CH} 2-\mathrm{N}-\mathrm{CH} 2$ of piperidine ring attached to carbamido moiety, $\mathrm{J}=7.1 \mathrm{~Hz} \mathrm{H}-2^{\mathrm{I}}$ and $\left.\mathrm{H}-3^{\mathrm{I}}\right), 4.80\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{N}-\mathrm{CH}_{2}-\mathrm{N}\right.$ - flanked between Benzimidazole and piperidine ring), $4.99\left(\mathrm{~s}, 2 \mathrm{H},-\mathrm{CH}_{2}\right.$ - group flanked between pyrazole and benzimidazole ring), $5.29(\mathrm{~s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15(\mathrm{~s}, 2 \mathrm{H},-\mathrm{NH}-$ of urea moiety), $7.30(\mathrm{~s}, 1 \mathrm{H}$, of pyrazole ring), 7.668.19(m, 3H, of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): ~ \delta 135.2,118.0,141.0,61.8,60.7,48.9$, $145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.7,54.5,25.6,24.5,156.5,49.0,24.9$ and 23.9 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15} \& \mathrm{C}_{19}, \mathrm{C}_{16} \& \mathrm{C}_{18}, \mathrm{C}_{17}, \mathrm{C}_{20}$, $\mathrm{C}_{21} \& \mathrm{C}_{24}$ and $\mathrm{C}_{22} \& \mathrm{C}_{24}, \mathrm{C}_{23} ;{ }^{31} \mathrm{PNMR}(161.89 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d} 6):-5.23$; Anal.calcd $(\%) \mathrm{C}_{25} \mathrm{H}_{33} \mathrm{~N}_{8} \mathrm{O}_{6} \mathrm{P}: \mathrm{C} 52.44 \%, \mathrm{H}$ $5.81 \%, \mathrm{~N} 19.57 \%$, P 5.41%. Found: C 51.64%, H 5.31%, N 18.97%, and P 4.71%.

4-methyl-N-(1-((1-((4-methylpiperazin-1-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c] pyrazol-6-yl)piperazine-1-carboxamide9(m):
Yield: $75 \% \%$; M.p: $194-196^{\circ} \mathrm{C} ; \operatorname{IR}(\mathrm{KBr}): 3320(\gamma \mathrm{p}-\mathrm{NH}), 3065$ (Ar-H), 2940\&2895(Aliphatic C-H), 1658 (-CO-N<) 1390\&1365 (Benzimidazole), 1375-1487(pyrazole), 1355 \& $1330\left(-\mathrm{NO}_{2}\right)$, $1300(\mathrm{C}-\mathrm{O}), 1254$ ($\mathrm{P}=\mathrm{O}$), 958 ($\mathrm{P}-\mathrm{O}$); $\mathrm{H}^{1}-$ NMR ($300 \mathrm{~Hz}, \mathrm{DMSO}-\mathrm{d} 6$): $\delta 2.26\left(\mathrm{~s}, 6 \mathrm{H},-\mathrm{CH}_{3}\right.$ group of two N -methyl piperazine rings) , $2.27\left(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH}_{2}-\mathrm{N}\left(\mathrm{CH}_{3}\right)-\mathrm{CH}_{2}-\right.$ of piperazine attached to carbamido moiety), $2.35(\mathrm{~s}, 8 \mathrm{H},-\mathrm{CH} 2-\mathrm{N}-\mathrm{CH} 20$ of piperazine ring attached to Benzimidazole ring) , $3.40(\mathrm{t}, 4 \mathrm{H},-\mathrm{CH} 2-\mathrm{N}-\mathrm{CH} 2$ - of piperazine ring attached to carbmido moiety $=7.1 \mathrm{~Hz}, \mathrm{H}-2 \mathrm{I}$ and $\mathrm{H}-3 \mathrm{I}$) , 4.80 ($\mathrm{s}, 2 \mathrm{H}$, $-\mathrm{N}_{-} \mathrm{CH}_{2}-\mathrm{N}$ - flanked between Benzimidazole and N -methyl piperazine ring), 4.99 ($\mathrm{s}, 2 \mathrm{H},-\mathrm{CH}_{2}{ }^{-}$group flanked between pyrazole and benzimidazole ring), 5.29 ($\mathrm{s}, 4 \mathrm{H}$, two CH_{2} groups attached to phosphorus moiety), $6.15\left(\mathrm{~s}, 1 \mathrm{H},-\mathrm{NH}\right.$ - of urea moiety), 7.30 (s, 1 H , of pyrazole ring), $7.19-7.61\left(\mathrm{~m}, 5 \mathrm{H}, \mathrm{C}_{6} \mathrm{H}_{5}\right.$ attached to urea moiety), $7.66-$ 8.19(m, 3 H , of benzimidazole ring); $\mathrm{C}^{13}-\mathrm{NMR}(75.46 \mathrm{NHz}, \mathrm{DMSo}-\mathrm{d} 6): \delta 135.2,118.0,141.0,61.8,60.7,48.9$, $145.9,116.1,118.6,144.3,106.7,135.1,148.3,75.4,52.5,57.3,46.6,158.5,51.4,51.0$ and 46.6 corresponding to $\mathrm{C}_{1}, \mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}, \mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}, \mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}, \mathrm{C}_{15}$, \& $\mathrm{C}_{18}, \mathrm{C}_{16} \& \mathrm{C}_{17}, \mathrm{C}_{19}$, $\mathrm{C}_{20}, \mathrm{C}_{21} \& \mathrm{C}_{24}, \mathrm{C}_{22} \& \mathrm{C}_{23}$, and $\mathrm{C}_{25} ;{ }^{31} \mathrm{PNMR}\left(161.89 \mathrm{MHz}\right.$,DMSO-d6): -8.23; Anal.calcd(\%) $\mathrm{C}_{25} \mathrm{H}_{35} \mathrm{~N}_{10} \mathrm{O}_{6} \mathrm{P}: \mathrm{C}$ $9.83 \%, \mathrm{H} 5.85 \%$, N $23.24 \%, \mathrm{P} 5.14 \%$.

Biological activity:

The antimicrobial activity [33] of chemical compound is influenced by physical and biological characteristics [34].It has been well established that physiological activity is a function of the chemical structure of compound [35].Heterocyclic organic compounds containing phosphorus, oxygen, nitrogen or sulfur in the ring system are expected to be more active due to the presence of hetero atoms [36,37,38].

In view of this, the synthesized new organophosphorus heterocyclic compounds have been tested for their antimicrobial activity.

Antibacterial activity:

The antibacterial activity [39] of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl) methyl))-6-nitro-1H-benzo[d] imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphos phepino[5,6-c]
pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxyphenyl/4-chloro phenyl)ureas(9a-j) and N-(1-((1-morpholinomethyl)-1H-benzo[d] imidazol-2yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphos phepino[5,6-c]pyrazol-6-yl) morpholine/piperadine/4-methyl piperazine carboxamides $(9 k-m)$ were screened against the Staphylococcus aureus (gram positive), BacillusCerus, Escherichia coli (gram negative) and Pseudomonas aeruginosa organism . Most of the compounds exhibited moderate antibacterial activity against bacteria. The presence of chloro group in the structure has shown increased effect on their antibacterial activity. Amoxicillin and Cefaclor are tested as reference compounds to compare the activity.

Antibacterial activity of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl)methyl))-6-nitro-1H-
benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2] dioxaphosphepino [5,6-c]pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxy phenyl / 4-chloro phenyl) ureas ($9 a-j$) and N -(1-((1-(morpholinomethyl)-1H-benzo [d] imidazol-2yl) methyl)-6-oxido-4, 8-dihydro -1H- [1, 3, 2] dioxaphosphepino [5,6-c] pyrazol-6-yl)morpholine/ piperidine /4-methyl piperazine carboxamides($9 k-m$)

COMPOUND (9)	\mathbf{R}	X	Zone of inhibition (mm)			
			Staphylococus aureus NCCS2079 $250(\mu \mathrm{~g} / \mathrm{disc})$	Bacillus Cerus NCCS2106 $250(\mu \mathrm{~g} / \mathrm{disc})$	EscherichiaColi NCCS2065 $250(\mu \mathrm{~g} / \mathrm{disc})$	Pseudomonas aeruginosa NCCS2200 $250(\mu \mathrm{~g} / \mathrm{disc})$
$9 a$	-H	O	6	4	5	3
$9 b$	$-\mathrm{CH}_{3}$	O	4	-	3	2
9 c	$-\mathrm{OCH}_{3}$	O	2	-	-	2
$9 d$	--Cl	O	16	13	15	17
$9 e$	-H	$-\mathrm{CH}_{2}$	4	2	3	3
$9 f$	- CH_{3}	$-\mathrm{CH}_{2}$	2	-	-	-
$9 g$	--Cl	$-\mathrm{CH}_{2}$	12	11	10	13
9h	-H	$-\mathrm{N}-\mathrm{CH}_{3}$	7	5	5	4
$9 i$	$-\mathrm{CH}_{3}$	$-\mathrm{N}-\mathrm{CH}_{3}$	5	3	3	2
9j	--Cl	-N-CH3	14	14	13	15
$9 k$	-	O	17	14	15	13
91	-	$-\mathrm{CH}_{2}$	11	9	11	12
9m	-	-N-CH3	14	11	13	12
9n	Amoxicillin	-	21	27	24	22
90	Cefaclor	-	19	22	19	20

Antifungal activity of 1(-(1-((1-(morpholInomethyl / piperidin-1-yl methyl/(4-methyl piperazine-1-yl)methyl))-6- nitro-1H-
benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2] dioxaphosphepino [5,6-c]pyrazole-6-yl)- 3 -(phenyl/p-tolyl/4-methoxy phenyl / 4-chloro phenyl) ureas ($9 a-j$) and N -(1-($(1-($ morpholino methyl)-1H-benzo[d]imidazol-2yl) methyl)-6-oxido-4, 8-dihydro -1H-[1, 3, 2] dioxaphosphepino [5, 6-c] pyrazol-6-yl) morpholine / piperidine/4-methyl piperazine carboxamides (9k-m)

COMPOUND(9)	R	X	Zone of inhibition (mm)	
			Aspergillus niger NCCS 1196 $250(\mu \mathrm{~g} / \mathrm{dsic})$	Canadida albicans NCCS 3471 $250(\mu \mathrm{~g} / \mathrm{dsic})$
$9 a$	-H	O	03	02
$9 b$	$-\mathrm{CH}_{3}$	O	02	-
9 c	$-\mathrm{OCH}_{3}$	O	02	-
$9 d$	--1	O	12	11
9 e	-H	$-\mathrm{CH}_{2}$	07	05
$9 f$	$-\mathrm{CH}_{3}$	$-\mathrm{CH}_{2}$	05	03
9 g	-Cl	$-\mathrm{CH}_{2}$	13	14
$9 h$	-H	$-\mathrm{N}-\mathrm{CH}_{3}$	07	06
$9 i$	$-\mathrm{CH}_{3}$	$-\mathrm{N}^{-\mathrm{CH}_{3}}$	08	05
$9{ }^{\text {j }}$	--Cl	$-\mathrm{N}-\mathrm{CH}_{3}$	14	13
9 k	-	O	16	14
91	-	$-\mathrm{CH}_{2}$	10	9
9 m	-	$-\mathrm{N}-\mathrm{CH}_{3}$	13	11
$9 n$	Ketoconazole	-	22	25

Antifungal activity

The antifugal activity of 1(-(1-((1-(morpholinomethyl/piperidin-1-ylmethyl/(4-methyl piperazine-1-yl)methyl))-6-nitro-1H-benzo[d]imidazole-2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazole-6-yl)-3-(phenyl/p-tolyl/4-methoxyphenyl/4-chlorophenyl)ureas($9 a-j$) andN-(1-((1-morpholinomethyl)-1H-benzo[d] imidazol -2-yl)methyl)-6-oxido-4,8-dihydro-1H-[1,3,2]dioxaphosphepino[5,6-c]pyrazol-6-yl)morpholine/ piperadine /4-
methylpiperazinecarboxamides $(9 k-m)$ were screened against Aspergillus niger, Canadida albicans. Ketoconazole and Griseofulvinis are useful references [40, 41]. Here Ketoconazole is tested as reference compound to compare the activity.

Acknowledgements

The authors (CHLP and VER) thanks to UGC-SAP and UGC-BSR, New Delhi for financial assistance. They are also thankful to Sri Krishnadevaraya University-Anantapur; IICT, Hyderabad and CDRI Lucknow for spectral and analytical data.

REFERENCES

[1] M.Verma, A.K.Chturvedi, A.Chowdari and S.S.Paramar, J.Pharm. Sci., 1974, 63, 1740.
[2] P.k.Naithani, V.K.Srivastava, J.P.Bharathwal, A.K. Saxena, T.K.Gupta and K.Shankhar, Indian J.Chem. 1989,28 B, 229 .
[3] M.Harfenist, E.F.Soroko and G.M.Mckenzie, J.Med. chem.., 1978, 21, 405
[4] Heohu and Hans, US, 1981, 4273776 ; chem.Abstr 1982, 96 V, 6725.
[5]A.R.Katritzky Comphrehensive Heterocyclic Chemistry, 1984, Vol 5, P. 497-98 .
[6] M.J. O, Neil, M.Smith, P.E.Heckelman (Eds), The Merk index, 13th Edition, Merk \& Co. Inc., NJ. P-1785, Monograph Number, 2001, P. 10074.
[7] (a) J.B.Wright, Chem.Rev. 1951, 48 , 397-541; (b) m. Amari, M.Fodili, B. Nedjar-kolli, J.Heterocyclic Chem. 2002, 39 , 811-816.
[8] P.Kohler, Int. J.Parasitol. 2001, 31, 336-339.
[9] P.N.Preston, Chem. Rev. 1974, 74 ,279-314.
[10] (a) H.J. Breslin, T.a.Miskowski, M.J.Kukla; H.L.De Winter, M.V.F.Somers, P.W.M.Roevens, R.W.Kavash, Bioorg. Med. Chem. Lett., 2003, 13 (24) , 4467-4471; (b) A.A.Spasov, pharmaceutical chemistry Journal, 1999, 33 (5) , 232-242 ; (c) J.Valdez, R.Cedillos, A. Hermandez-campos , L.Yepez, F. Hernandez-Luis, G. Navarrete Vazquez, A. Tapia, R. Cortes, M.Hermandezc, R. Castillo, Bioorg. Med. Chem. Lett. 2002, 12, 2221-2224.
[11] (a) K.C. Joshi , S. Giri, J.Indian Chem. Soc, 1962, 39 (3) , 185-187 ; (b) R.A. Appleon, J.R. Bantick, T.R. Chamberlain, D.N. Harden, T.B. Lee, J. Med. Chem., 1977 , 20 (3) 371-379 ; (c) G.H. Ladouceur, R.D. Connell, J.Baryza, A.M. Campbell, T.G.Lease, G. Timothy, J.H.Cook, WO1999, 475, 9932, Chem. Abstr 1999, 131, 73558.
[12] (a) V.L.G.R. Eugene, D.B.M.F. Leopold, S.M.F. Josephin, EP 0145067 Chem. Abstr: 1985 , 104 , 5773; (b) W. MCNeely, Drugs, 1999, 57 633-651; (c) A. Vande Water, J. Cardiovasc. Pharmacol. 1988, 11, 552-563; (d) G. V. Lommen, J.Pharma. Belg. 1990, 45, 355-360.
[13] S. Kii-Cho, B.Masatoshi, S. Makoto, H. Chiliro, M. Kuniharu, EP 719556, Chem. Abstr: 1996 ,125 , 96139a ; (b) K. Masayasu, B. Yukata, T. Yamaguchi, R. Unno, H. Kimura, H. Inagaki, T. Noboru, T . Suzuki, B. Masatoshi, EP 595183 , Chem. Abstr ; 1994, 121, 57539 d ; (c) M.A. yorek, L.J. coppey, J.S Gellett, E.P. Davidson, D.D. Lund , Exp . Disability Res. 2004, 5 2, 123-128.
[14] Bobbavenkata Siva kumar a, b, Sanjay Dashrath vaidya a, Ramanatham Vinod kumar a, shekar Bhaskar Bhiruda, Ramachandra Bhimrao Mane. European Journal of Medicinal chemistry 2006, 41, 599-604.
[15] K.Swathi, A. Srinivas and M.Sarangapani; J.Chem. Pharm.Res., 2010, 2 (2) , 220-225.
[16] K.S.Bhavani Aiswarya, P .Jagadeeswara Rao, Y.N.Spoorthy, D.Isharth Begum and L.K Ravindranath*; J.Chem. Pharm.Res. 2012, 4(8) , 4052-4059.
[17] Fouzia Bouchareb, Sihem Hessania, Malik Berredjem, hounaida Benbouzid, Houria Djebbar, Nour-Eddine Aouf ; American journal of organic chemistry, 2012, 2 (1), 14-17.
[18] Sridevi kona, Venkata N.R Chava, Rama Suresh Ravi, Ramu Sridhar P and manab Chakravarthy; Der chemical Sinica, 2012, 3 (3), 548-556.
[19] E. Breuer, The chemistry of organophosphorus compounds, Heartly, F. R. Ed., John wiely and sons, Newyork, 1996, Vol 4, 653.
[20] Faraci, W.S ., Yang , B .V., D.O, Rourke , R.W.Spencer ., Bioorg. Med. Chem., 1995 , 3, 605.
[21] C .Fest, K.J. Schmidt, the chemistry of organophosphorus pesticides Springer-Verlag, Berlin, 1982, 12.
[22] Nivarkar, M. Gupta, A. K. Kaushik, M.P., Tetrahedron Lett. 2004 , 45, 6863.
[23] Y. Haranadha Reddy , B. Siva kumar, G. Chandrasekhar Reddy, E. Dadapear and K.Subramanyam Reedy ; Der chemica Sinica, 2012, 3 (4) , 817-823.
[24] Mehellou, Y., MeGuigan, C., Brancale, A., Balzarini, J., , Bioorg .Med. chem. Lett. 2007, 17, 3666.
[25] Guigan , C .M., Thiery , J .C., Daverio , F., Jiang , w. J., Da-vies , G., Mason , M., Bioorg. Med. Chem.. 2005 , 13, 3219.
[26] A M Polozov; AV Khotinen; EN Klimovitskii. Phosphorus, sulphur, silicon Relat, Elem., 1996, 581, 109-110.
[27] M. F Stephen Babu, U Anasuyamma, M Venugopal, C N Nagaraju and C. Suresh Reddy; Indian journal of chemistry, June plaintiff. 2005, Vol / 44B, 1248-1251.
[28] (a)AV kirsanov and ES Levchenko, Zh obschch khim 1956, 26, 2285; 1957, 27, 2585; chem. Abstr, 1957, 51,1875 F.(b) AV kirsanov and ES Levchenko, J Genchem, USSR, 1956, 26, 2555.
[29] (a)AV kirsanov and ES Levchenko, Zh obschch khim, 1956, 26, 2285 ; 27,2585,;chem. Abstr, 1957, 51,1875
F. (b) AV kirsanov and ES Levchenko, J Genchem, USSR, 1956, 26, 2555.
[30] Khiangte Vanladinpuia, Ghanashyam Bez Tetrahedron Letters 2011, 52, 3759-3764
[31] Ilkay Yildiz-Oren, Ismail Yalcin, Esin Aki-Sener, Nejat Ucarturk; European Journal of Medicinal Chemistry 2004, 39, 291-298.
[32] Nobba Venkata Siva, Kum ar, Sanjay Dashrath Viadya, Ramanatham Vinod Kumar, Shekhar Bhaskar Bhiruda, Ramchandra Bhimrao mane ; European Journal of Medicinal Chemistry 2006, 41, 599-604.
[33]N.Bakthavatchala Reddy,B.Siva Kumar, N.J.Reddy, p.santhipriya and C.Suresh Reddy, j.chem.Pharm.Res.,2010, 2(2) ,405-410.
[34] M.Veera Narayana Reddy, A.Bala Krishna, C.Suresh Reddy, Eur.J.Med.Chem.2010, 45, 1828.
[35] D.V.Mangete, S.P.Deshmukh, D.D.Bhokare, A.Arti Deshpande, Indian J.Pharma.SCI.2007, 69 , 295.
[36] A C Brown and T Fracer, Trans Roy Soc Edinbrug, 1968-69, 25, 151, 693.
[37] B.Siva Kumar and Y.Haranadha Reddy; Scholars Research Library; Der Pharma. Chemica, 2011, 3(5) , 29-34.
[38]A.BalaKrishna , S.Annar , M.VeeraNarayanaReddy, G.chendraShekarReddy, C.SureshReddy, S.K.Nayak. J.Chem. Pharma.Res., 2009, 1(1), 256.
[39] H.M Hassan and A.Farrag, J.Chem.Pharm.Res., 2011, 3(2) , 776-785.
[40] R.A.Banjara, S.K. Jadhav and S.A Bhoite, J.Chem.Pharm.Res., 2012, 4(1), 648-652.
[41] HJ Benson, Microbiological Applications, W M C Brown Publication, USA, 1990, $5^{\text {th }}$ ed, 134.

