Synthesis and Evaluation of New Non-nucleoside Compounds Based on Theinopyrimidine Nucleus with Expected Biological Activity against Microorganisms

Asmaa L Alanzy and Hussein H El-Ganzory*
Faculty of Science, Department of Chemistry, Qassim University, Buridah, Qassim, Saudi Arabia

Abstract

A series of substituted thieno[2,3-d]pyrimidines was synthesized starting from ethyl 2- amino-4,5-dimethylthiophene-3-carboxylate and ethyl 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene- 3-carboxylate. Reaction of 2-hydrazino-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one, 2-hydrazino- 5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one and its 3-allyl analogue with different reagents afforded thieno [2,3-d]triazolo[4,3-a]pyrimidines and thieno[3,2-e]triazolo[4,3- a]pyrimidines, beside open chain derivatives.

Keywords: Thieno[2,3-d]triazolo[4,3-a]pyrimidines; Thieno[3,2-e]triazolo[4,3-a]pyrimidines; Thieno[3,2-e]tetrazolo[1,5-a]pyrimidines; Thiosemicarbazides; Hydrazones

INTRODUCTION

Thienopyrimidine derivatives have received considerable attention due to their wide range of biological activities such as antimicrobial [1,2], antiviral [3], anticancer [4,5], anti-inflammatory [6,7], antihistaminic [8], antipyretics [9], antianaphylactic [10], anticonvulsant [11] and immunostimulant [12] properties. Besides, many thienopyrimidine compounds exhibited analgesic [13], neurotropic [14], molluscicidal and larvicidal [15] activities. In fact, some of them have been reported to display good activity as Phosphodiesterase [16,17], dihydrofolate reductase (DHFR) [18], VEGF kinase [19] inhibitors, in addition to prevention of cartilage destruction in articular disease [20,21]. In continuation of our previous work on searching antiviral compounds [22-26] and on the title compounds [27], we reported herein the synthesis a new series of thienopyrimidine derivatives.

EXPERIMENTAL SECTION

Melting points are uncorrected. IR spectra were recorded with PERKIN - ELMER MODEL 1720 FTIR spectrometer. ${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{CNMR}$ spectra were determined with a varian EM 390 and Bruker AC - 250 spectrometers. The chemical shifts in ppm are expressed in the δ scale using tetramethylsilane as internal standard. Coupling constants are given in Hz. Mass spectra were recorded on an AEIMS 30 spectrometer. TLC was performed on Merck silica gel 60-F 254 precoated plastic plates. Microanalyses were performed in the unit of microanalysis at the universities of Qassim and Abdul-Aziz (KSA); the results were in satisfactory agreement with the calculated values.

General Procedure for Synthesis of Ethyl-2-Amino-4,5-Disubstitutedthiophene-3-Carboxylate ($\mathbf{1}_{\mathrm{a}, \mathrm{b}}$)

 To a stirred mixture of corresponding ketones (50 mmol), ethylcyanoacetate ($5.65 \mathrm{~g}, 50 \mathrm{mmol}$), morpholin (4.5 g , 50 mmol) and absolute ethanol (3.00 ml), sulfur ($1.6 \mathrm{~g}, 50 \mathrm{mmol}$) was added gradually with continuous stirring inwater bath $\left(60^{\circ} \mathrm{C}\right)$ for 6 hours. The reaction mixture was cooled and poured into crushed ice (100 ml). The separated solid was filtered, washed and crystallized from ethanol.

Ethyl-2-amino-4,5-dimethylthiophene-3-carboxylate ($\mathbf{1}_{\mathrm{a}}$):

From butane-2-One ($3.61 \mathrm{~g}, 50 \mathrm{mmol}$) as described, Yield ($7.5 \mathrm{~g}, 75 \%$) as yellow crystals, m.p.: $50-52^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr})$ $v=1565(\mathrm{C}=\mathrm{C}), 1710(\mathrm{C}=\mathrm{O}), 3180,3215 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=1.28\left(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15$ $\left(\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.18\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.23\left(\mathrm{q}, \mathrm{J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.21\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$.

Ethyl-2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate ($\mathbf{1}_{\mathrm{b}}$):

From cyclohexanone ($4.91 \mathrm{~g}, 50 \mathrm{mmol}$) as described, Yield ($7.9 \mathrm{~g}, 70 \%$) as dark yellow crystals, m.p.: 58-60 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1568(\mathrm{C}=\mathrm{C}), 1690(\mathrm{C}=\mathrm{O}), 3195,3216 \mathrm{~cm}^{-1}\left(\mathrm{NH}_{2}\right) ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=1.48\left(\mathrm{t}, \mathrm{J}=8.1 \mathrm{~Hz}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $1.75\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.66\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.81\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.22\left(\mathrm{q}, \mathrm{J}=7.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.32\left(\mathrm{~s}, 2 \mathrm{H}, \mathrm{NH}_{2}\right)$.

General Procedure for Synthesis of Ethyl-2-(3-Allylthioureido)-4,5-Disubstitutedthiophene-3-Carboxylate

 (2 ${ }_{\mathrm{a}, \mathrm{b}}$)A mixture of $\mathbf{1}_{\mathrm{a}, \mathrm{b}}(10 \mathrm{mmol})$ and methylisothiocyanate $(0.73 \mathrm{~g}, 10 \mathrm{mmol})$ in absolute ethanol (10 ml), was boiled under reflux for 3 hours. The reaction mixture was cooled and poured onto cold water. The separated solid was filtered, washed with $\mathrm{H}_{2} \mathrm{O}$, dried and crystallized from ethanol.

Ethyl 2-(3-allylthioureido)-4,5-dimethylthiophene-3-carboxylate (2 ${ }^{2}$):

From ester $1_{\mathrm{a}}(1.99 \mathrm{~g}, 10 \mathrm{mmol})$ as described to give brown crystals. Yield ($2.38 \mathrm{~g}, 80 \%$), m.p.: 80f $-82^{\circ} \mathrm{C}$; IR (KBr) $v=1573(\mathrm{C}=\mathrm{C}), 1655(\mathrm{C}=\mathrm{O}), 3217 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-\mathrm{d}_{6}\right) \delta=1.32\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 2.18(\mathrm{~s}, 3 \mathrm{H}$, $\left.\mathrm{CH}_{3}\right), 2.19\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 4.27\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.30\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{j}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{c i s}=10.4 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right)$, $5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.93\left(\mathrm{~m}, 1 \mathrm{H}, 2{ }^{\prime}-\mathrm{H}\right), 11.13(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.97(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, (298.2)(Calc/ Foud) C (52.35/52.11), H (6.04/5.83), N (9.40/9.14).

Ethyl-2-(3-allylthioureido)-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate (2_{b}):

From ester $1_{\mathrm{b}}(2.25 \mathrm{~g}, 10 \mathrm{mmol})$ as described to give dark brown crystals. Yield ($2.66 \mathrm{~g}, 82 \%$), m.p.: $100-102^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1570(\mathrm{C}=\mathrm{C}), 1651(\mathrm{C}=\mathrm{O}), 3201 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-\mathrm{d}_{6}\right) \delta=1.31\left(\mathrm{t}, 3 \mathrm{H}, J=7.3 \mathrm{~Hz}, \mathrm{CH}_{3}\right), 1.71$ (bm, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $2.56\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.29\left(\mathrm{q}, 2 \mathrm{H}, \mathrm{J}=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.20(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\text {cis }}=10.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.88\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 9.57(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.52(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}=324 ; \mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}$, (324.2); (Calc/ Foud), C (55.56/55.21), H (6.17/5.80), N (8.64/8.33).

General Procedure for Synthesis of 2-Mercapto-5,6-Disubstitutedthieno[2,3-d]Pyrimidin- 4(3H)-one ($\mathbf{3}_{\mathrm{a}, \mathrm{b}}$) A stirred mixture of $1_{\mathrm{a}, \mathrm{b}}(10 \mathrm{mmol})$ and excess of potassium thiocyanate $(1.94 \mathrm{~g}, 20 \mathrm{mmol})$ in dioxan (25 ml) and absolute ethanol (5 ml) was stirred with gradually addition of hydrochloric acid 37% (5 ml). The reaction mixture was boiled under reflux for 6 hours, cooled and poured into crushed ice. The separated solid was boiled in sodium hydroxide solution ($1 \mathrm{M}, 50 \mathrm{ml}$) for 10 minutes, then cooled and neutralized by hydrochloric acid (1M). The precipitate was filtered, washed and crystallized from ethanol.

2-Mercapto-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one ($\mathbf{3}_{\mathrm{a}}$):

A stirred mixture of $1_{\mathrm{a}}(1.99 \mathrm{~g}, 10 \mathrm{mmol})$ as described to give white ppt. Yield $(1.65 \mathrm{~g}, 78 \%)$, m.p.: $220-222^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=1540(\mathrm{C}=\mathrm{C}), 1667 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta: 2.15\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.21\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 12.24,13.32$ ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$); ${ }^{13} \mathrm{CNMR} \delta: 22.65$ (2 Me), 11.35, 115.80, 145.60, 153.11 (Thiophene), $157.43(\mathrm{C}=\mathrm{O}), 173.14(\mathrm{C}=\mathrm{S})$.

2-Mercapto-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one ($\mathbf{3}_{\mathrm{b}}$):

A stirred mixture of $1_{\mathrm{b}}(2.25 \mathrm{~g}, 10 \mathrm{mmol})$ as described to give white ppt. Yield $(1.88 \mathrm{~g}, 79 \%)$, m.p.: $230-232^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}) v=1548(\mathrm{C}=\mathrm{C}), 1669 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-\mathrm{d}_{6}\right) \delta: 2.41\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.87\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.15$ (bm, 2H, CH2), 12.39, 13.46 ($2 \mathrm{~s}, 2 \mathrm{H}, 2 \mathrm{NH}$).

Allyl-2-mercapto-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (4b):
A solution of $2_{b}(3.24 \mathrm{~g}, 10 \mathrm{mmol})$ in (2 M) Aqueous solution of sodium hydroxide (15 ml) was boiled under reflux for 1 hour. After cooling the reaction mixture was neutralized by hydrochloric acid (2M). The precipitate was filtered, dried and crystallized from ethanol as pale brown crystals. Yield ($1.95 \mathrm{~g}, 70 \%$), m.p.: $232-234^{\circ} \mathrm{C} . \mathrm{IR}(\mathrm{KBr})$, $v=1539,1628(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1671(\mathrm{C}=\mathrm{O}), 3267,3302 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(\right.$ DMSO- $\left._{6}\right) \delta=1.80\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.77 (bm, 2H, CH2), 2.86(bm, 2H, CH_{2}), $4.57\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.31\left(\mathrm{bm}, 2 \mathrm{H},=\mathrm{CH}_{2}\right), 5.91(\mathrm{bm}, 1 \mathrm{H}, 2 \mathrm{H}-\mathrm{H}), 14.08(\mathrm{~s}$,
$1 \mathrm{H}, \mathrm{NH}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}=278 ; \mathrm{C}_{13} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{OS}_{2},(278.1)$, (Calc/ Foud) $\mathrm{C}(56.09 / 55.71), \mathrm{H}(5.03 / 4.70), \mathrm{N}(10.07 / 9.72)$.
General Procedure for Synthesis of 5,6-Disubstituted-2-(methylthio)thieno[2,3-d]pyrimidin- 4(3H)-one (5 $\mathbf{5}_{\mathrm{a}, \mathrm{b}}$) A solution of $3_{\mathrm{a}, \mathrm{b}}(10 \mathrm{mmol})$ in $(150 \mathrm{ml})$ of sodium hydroxide $(0.1 \mathrm{M})$ and dimethylsulphate $(15 \mathrm{ml})$ was stirred for 5 minutes. Produced precipitate was dissolved by through addition of sodium hydroxide (4 N). The solution was heated at $\left(70^{\circ} \mathrm{C}\right)$ for 10 minutes. After cooling the solution was filtered off and neutralized by hydrochloric acid $(2 \mathrm{~N})$. The precipitate was filtered, dried and recrystallized from ethanol.

5,6-Dimethyl-2-(methylthio)thieno[2,3-d]pyrimidin-4(3H)-one (5a):

From $3_{\mathrm{a}}(2.12 \mathrm{~g}, 10 \mathrm{mmol})$ as described before to give pale brown crystals. Yield $(1.65 \mathrm{~g}, 73 \%)$, m.p.: $250-252^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1550(\mathrm{C}=\mathrm{C}), 1666 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 3210 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-d_{6}\right) \delta: 1.95\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.58\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{SCH}_{3}\right), 12.52(\mathrm{bs}, 1 \mathrm{H}, \mathrm{NH})$.

2-Methyl-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (5b):

From $3_{\mathrm{b}}(2.38 \mathrm{~g}, 10 \mathrm{mmol})$ as described before to give gray crystals. Yield ($1.54 \mathrm{~g}, 70 \%$), m.p.: 258-260 ${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1612(\mathrm{C}=\mathrm{C}), 1680 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}), 3225 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-d_{6}\right) \delta: 1.77\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.60(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{SCH}_{3}$), 2.77 (bt, 2H, CH_{2}), 2.92 (bt, 2H, CH_{2}), 12.11 (bs, $1 \mathrm{H}, \mathrm{NH}$).

2-Allyl-2-hydrazino-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one ($\mathbf{6}_{\mathrm{b}}$):
A mixture of $4_{\mathrm{b}}(2.78 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ in absolute ethanol $(15 \mathrm{ml})$ was boiled under reflux for 3 hours. The precipitate that separated on cooling was filtered off and recrystallized from ethanol to provide yellowish white crystals. Yield ($2.10 \mathrm{~g}, 76 \%$), m.p.: $198-20^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v=1539,1628(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1670(\mathrm{C}=\mathrm{O})$, $3267,3302 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-d_{6}\right) \delta=1.74\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.61\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.35$ (bd, $2 \mathrm{H}, \mathrm{NH}_{2}$), $4.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {cis }}=10.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.2 \mathrm{~Hz}, 3 '-\mathrm{Hb}\right), 5.83$ (m, 1H, 2'-H), 8.23 ($\mathrm{s}, 1 \mathrm{H}, \mathrm{NH}$); $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$, (276.1), (Calc/ Foud) C (56.50 / 56.19), H (5.80 / 5.56), N (20.28 / 19.89).

2-hydrazinyl-5,6-disubstitutedthieno[2,3-d]pyrimidin-4(3H)-one (7 $\mathbf{7}_{\mathrm{a}, \mathrm{b}}$):
A mixture of $5_{\mathrm{a}, \mathrm{b}}(10 \mathrm{mmol})$ and $\mathrm{NH}_{2} \mathrm{NH}_{2} \cdot \mathrm{H}_{2} \mathrm{O}(5 \mathrm{ml})$ in absolute ethanol $(15 \mathrm{ml})$ was boiled under reflux for 3 hours. The precipitate that separated on cooling was filtered off and recrystallized from ethanol.

2-hydrazinyl-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)-one (7a):

From $5_{\mathrm{a}}(2.26 \mathrm{~g}, 10 \mathrm{mmol})$ as described before to provide white precipitate. Yield $(1.66 \mathrm{~g}, 79 \%)$, m.p.: 200-202 ${ }^{\circ} \mathrm{C}$; IR (KBr) $v=1620(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1710(\mathrm{C}=\mathrm{O}), 3264 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-\mathrm{d}_{6}\right) \delta: 1.85\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.15(\mathrm{~s}$, $3 \mathrm{H}, \mathrm{CH}_{3}$), $4.80\left(\mathrm{bs}, 2 \mathrm{H}, \mathrm{NH}_{2}\right), 8.29,8.44(\mathrm{bs}, 2 \mathrm{H}, 2 \mathrm{NH}) ;{ }^{13} \mathrm{CNMR} \delta: 22.73(2 \mathrm{Me}), 108.70,124.16,146.07,155.62$ (Thiophene), 156.80, ($\mathrm{C}=\mathrm{N}$), $164.72(\mathrm{C}=\mathrm{O})$.

2-Hydrazino-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (7 $\mathbf{7}_{\mathbf{b}}$):

From $5_{\mathrm{a}}(2.20 \mathrm{~g}, 10 \mathrm{mmol})$ as described before to provide white precipitate. Yield $(1.84 \mathrm{~g}, 78 \%)$, m.p.: $189-191^{\circ} \mathrm{C}$; $\operatorname{IR}(\mathrm{KBr}) v=1550,1618(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1669(\mathrm{C}=\mathrm{O}), 3260,3290 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}\left(D M S O-d_{6}\right) \delta=1.96(\mathrm{bm}, 4 \mathrm{H}$, $2 \mathrm{CH}_{2}$), 2.71 (bt, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.90 (bt, $2 \mathrm{H}, \mathrm{CH}_{2}$), 4.42 (bd, $2 \mathrm{H}, \mathrm{NH}_{2}$), 8.33, 8.48 (bs, $2 \mathrm{H}, 2 \mathrm{NH}$).

General Procedure for Synthesis of Compounds ($\mathbf{8}_{\mathrm{a}, \mathrm{b}}$)

A solution of $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ and excess of appropriate isocyanate (2 mmol) in ethanol (10 ml) was boiled under reflux for 4 hours. The product that separated after cooling was filtered off and recrystallized from ethanol.

2-(4-Oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-N phenylhydrazinecarboxamide ($\mathbf{8}_{\mathrm{a}}$): From 7_{b} and phenylisocyanate ($0.24 \mathrm{~g}, 2 \mathrm{mmol}$), Yield ($0.30 \mathrm{~g}, 85 \%$) of white crystals, m.p.: 177-179${ }^{\circ} \mathrm{C}$. IR (KBr) v $=1550(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1625(\mathrm{NHCONH}), 1672(\mathrm{C}=\mathrm{O}), 3325,3380 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \operatorname{HNMR}\left(D M S O-\mathrm{d}_{6}\right) \delta=1.75(\mathrm{bm}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), $2.65\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.96(\mathrm{t}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.25(\mathrm{t}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.46(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.01$ (s, 1H, NH), $9.22(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 12.02(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{17} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S},(355.2)$, (Calc/ Foud) C (57.43 / 57.11), H (4.79 / 4.44), N (19.71 / 20.12).
\mathbf{N}-allyl-2-(4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2- yl)hydrazinecarboxamide ($\mathbf{8}_{\mathrm{b}}$): From 7_{b} and propylisocyanate $(0.17 \mathrm{~g}, 2 \mathrm{mmol})$, Yield $(0.26 \mathrm{~g}, 80 \%)$ of white crystals, m.p.: 207-209${ }^{\circ} \mathrm{C}$. IR (KBr) v
$=1546(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1620(\mathrm{NHCONH}), 1671(\mathrm{C}=\mathrm{O}), 3318,3379 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{HNMR}\left(D M S O-\mathrm{d}_{6}\right) \delta=0.85(\mathrm{~m}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 1.75\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.62\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.79\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.00\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.48(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH})$, $7.80(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.28(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 10.81(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S},(321.1)$, (Calc/ Foud) C (52.32/52.51), H (5.92 / 6.21), N (21.80 / 22.16).

General Procedure for Synthesis of Compounds ($\mathbf{9}_{\mathrm{a}-\mathrm{c}}$)

A solution of $7_{\mathrm{a}, \mathrm{b}}(1 \mathrm{mmol})$ and the appropriate ketones (1 mmol) in 30 ml ethanol containing few drops of glacial acetic acid, was boiled under reflux for 3 hours. The product that separated out on cooling was filtered off, dried and crystallized from ethanol.

2-[N^{\prime}-(1-Phenyl-ethylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5] thieno[2,3-d]pyrimidin-4-one (9, $\mathbf{9}_{\mathrm{a}}$): From $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ and acetophenone $(0.12 \mathrm{~g}, 1 \mathrm{mmol})$ as described to undergo yellow precipitate, Yield $(0.27 \mathrm{~g}, 81 \%)$, m.p.: $223-225^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1608(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1668(\mathrm{C}=\mathrm{O}), 3228 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{HNMR}$ (DMSO $\left.\mathrm{d}_{6}\right) \delta=1.77\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.52\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.43(\mathrm{~m}, 3 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.01$ (m, 2H, Ar-H), 10.62(s, 1H, NH), 10.91(s, 1H, NH); MS, m/z = $338\left[\mathrm{M}^{+}\right] ; \mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}$, (338.2), (Calc/ Foud) C (63.91/ 63.62), H (5.33 / 5.14), N(16.57 / 16.79).

2-\{ $\left.N^{\prime}-[1-(4-C h l o r o-p h e n y l)-e t h y l i d e n e]-h y d r a z i n o\right\}-5,6,7,8-t e t r a h y d r o-3 H-b e n z o[4,5] t h i e n o[2,3-d] p y r i m i d i n-~$ 4-one (9_{b}):
From $7_{b}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ and p-chloroacetophenone ($\left.0.15 \mathrm{~g}, 1 \mathrm{mmol}\right)$ as described to provide white precipitate, Yield $(0.29 \mathrm{~g}, 77 \%)$, m.p.: $214-216^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1605(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1662(\mathrm{C}=\mathrm{O}), 3377 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(D M S O-\mathrm{d}_{6}\right) \delta=1.78\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.32\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.66\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 7.46(\mathrm{~d}, J=$ $8.6 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.05(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 10.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.06(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=14.51$ $\left(\mathrm{CH}_{3}\right) 22.18,23.29,24.79,25.86,\left(4 \mathrm{CH}_{2}\right), 111.27,117.01,127.21,134.29$ (thiophene), 114.14, 119.88, 128.98, 130.98, (Ar-C), 148.85, 150.74($2 \mathrm{C}=\mathrm{N}$), $159.13(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}=372 ; \mathrm{C}_{18} \mathrm{H}_{17} \mathrm{ClN}_{4} \mathrm{OS}$, (372.6), (Calc/ Foud) C (57.97 / 58.22), H (4.56 / 4.88), N (15.03 / 14.77).

2-(2-(1-(4-chlorophenyl)ethylidene)hydrazinyl)-5,6-dimethylthieno[2,3-d]pyrimidin-4(3H)- one (9c):
From $7_{\mathrm{a}}(0.21 \mathrm{~g}, 1 \mathrm{mmol})$ and p-chloroacetophenone $(0.15 \mathrm{~g}, 1 \mathrm{mmol})$ as described to give white precipitate, Yield $(0.26 \mathrm{~g}, 74 \%)$, m.p.: $183-185^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1605(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1662(\mathrm{C}=\mathrm{O}), 3217,3375 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(D M S O-\mathrm{d}_{6}\right) \delta=2.28\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.30\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.35\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 7.48(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.06(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H})$, $10.65(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 11.03(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=12.71,13.31,14.50\left(3 \mathrm{CH}_{3}\right), 111.27,119.06,128.06,136.92$, (thiophene), 114.14, 117.18, 128.61, 128.74, (Ar-C), 150.75, 158.37(2C=N), $159.52(\mathrm{C}=\mathrm{O}) ; \mathrm{MS}, \mathrm{m} / \mathrm{z}=346$; $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}$, (346.6), (Calc/ Foud) C (55.40 / 55.71), H (4.33 / 4.71), N (16.16 / 15.88).

General Procedure for Synthesis of Compounds ($\mathbf{1 0}_{\mathrm{a}, \mathrm{b}}$)
A solution of $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ and excess of isothiocyanate $(2 \mathrm{mmol})$ in ethanol $(15 \mathrm{ml})$ was boiled under reflux for 4 hours. The product that separated after cooling was filtered off and recrystallized from ethanol.

N-allyl-2-(4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2- yl)hydrazinecarbothioamide (10 ${ }_{\mathrm{a}}$): From $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ allylisothiocyanate $(0.20 \mathrm{~g}, 2 \mathrm{mmol})$ as described to provide white precipitate, Yield $(0.27 \mathrm{~g}, 80 \%)$, m.p.: $199-201^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1577(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1693(\mathrm{C}=\mathrm{O}), 3120,3336 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(D M S O-\mathrm{d}_{6}\right) \delta=1.82\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.66\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.86\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.92\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 5.17$ (dd, $\left.1 \mathrm{H}, J_{\text {cis }}=10.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 6.06\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.27,8.21,9.30,12.77$ $(4 \mathrm{~s}, 4 \mathrm{H}, 4 \mathrm{NH}) ; \mathrm{C}_{14} \mathrm{H}_{17} \mathrm{~N}_{5} \mathrm{OS}_{2}$, (335.2), (Calc/ Foud) C (50.12 / 49.87), H (5.07 / 4.81), N(20.88 / 20.61).

N-benzyl-2-(4-Oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)hydrazinecarbothioamide (10 ${ }_{\mathrm{b}}$): From $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ benzylisothiocyanate $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$ as described to provide white precipitate, Yield $(0.33 \mathrm{~g}, 85 \%)$, m.p.: $175-177^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}) v=1595(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1689(\mathrm{C}=\mathrm{O}), 3120,3346 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(D M S O-d_{6}\right) \delta=1.85\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.64\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.88\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.75\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 7.27(\mathrm{~m}$, $5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.41(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.49(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.75(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 11.25(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{18} \mathrm{H}_{15} \mathrm{~N}_{5} \mathrm{OS}_{2},(385.2)$, (Calc/ Foud) C (56.07 / 55.81), H (4.93 / 5.28), N (18.17 / 17.79).

2-(3,5-Dimethyl-pyrazol-1-yl)-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4- one (11):
A mixture of $7_{\mathrm{b}}(0.236 \mathrm{~g}, 1 \mathrm{mmol})$ and pentane-2,4-dione $(0,12 \mathrm{~g}, 1.2 \mathrm{mmol})$ was heated under reflux for 6 hours in absolute ethanol (30 ml). The reaction mixture was allowed to cool. The solid product that separated out was filtered
and recrystallized from ethanol as pale orange crystals. Yield ($0.26 \mathrm{~g} \mathrm{86} \mathrm{\%}$), m.p.: 204-206 ${ }^{\circ} \mathrm{C}$; $\mathrm{IR}(\mathrm{KBr}) v=$ $1593(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1677(\mathrm{C}=\mathrm{O}), 3211 \mathrm{~cm}^{-1}(\mathrm{NH}){ }^{1} \mathrm{H}-\mathrm{NMR}\left(\mathrm{DMSO}-\mathrm{d}_{6}\right) \delta=1.83\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.23\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.56\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.72\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.89\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 6.24(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 11.77(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS}$, (300.1), (Calc/ Foud) C (59.98 / 59.69), H (5.37 / 5.73), N (18.65 /18.73).

4-Allyl-6,7,8,9-tetrahydro-4H-10-thia-2,3,4,10b-tetraaza-cyclopenta[a]fluoren-5-one (12):
A solution of $6_{b}(0.28 \mathrm{~g}, 1 \mathrm{mmol})$ in either formic acid or trimethylorthoformate (10 ml) was heated under reflux for 6 hours. The reaction mixture was allowed to cool and poured onto ice cold water (100 ml). The product that separated out was filtered, washed with water, dried and crystallized from ethanol as colorless crystals. Yield (0.26 g, 90%), m.p.: $215-217^{\circ} \mathrm{C}$; IR (KBr), $v=1593(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1666 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.78\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.75 (bm, 2H, CH2 $) 2.85\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.72\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 5.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right) 5.24(\mathrm{dd}, 1 \mathrm{H}$, $\left.J_{\text {trans }}=17.3 \mathrm{~Hz}, 3{ }^{\prime}-\mathrm{Hb}\right), 5.93\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 9.12(\mathrm{~s}, 1 \mathrm{H}, \mathrm{CH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=21.28,22.21,24.01,24.92\left(4 \mathrm{CH}_{2}\right)$, 43.89, (NCH_{2}), 130.11, 131.28, 135.43, 138.25,(thiophene), 117.31, 132.36 (allyl $\mathrm{C}=\mathrm{C}$), 145.62, 147.59 ($2 \mathrm{C}=\mathrm{N}$), $155.13(\mathrm{C}=\mathrm{O}) ; \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS},(286.1)$, (Calc/ Foud) C (58.72 / 58.51), H (4.89 / 5.11), N (19.57 / 19.23).

4-allyl-1-methyl-6,7,8,9-tetrahydro-4H-10-thia-2,3,4,10b-tetraaza-cyclopenta[a]fluoren-5- one (13):

A solution of $6_{b}(0.28 \mathrm{~g}, 1 \mathrm{mmol})$ in either acetic acid or triethylorthoformate (10 ml) was heated under reflux for 6 hours. The reaction mixture was allowed to cool and poured onto ice cold water (100 ml). The product that separated out was filtered, washed with water, dried and crystallized from ethanol as colorless crystals. Yield ($0.27 \mathrm{~g}, 89 \%$), m.p.: $228-230^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1589(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1670 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.59(\mathrm{~s}$, $\left.3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.73\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.84\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.66\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=9.9 \mathrm{~Hz}, 3\right.$ '- Ha) , 5.19 (dd, $\left.1 \mathrm{H}, J_{\text {trans }}=16.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right) 5.90\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right) ; \mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{4} \mathrm{OS},(300.1)$, (Calc/ Foud) C (59.99 / 60.31), H (5.33 / 5.66), N(18.66 / 19.01).

4-allyl-1-mercapto-6,7,8,9-tetrahydro-4H-10-thia-2,3,4,10b-tetraaza-cyclopenta[a]fluoren- 5-one (14):

A mixture of $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and $\mathrm{CS}_{2}(0.9 \mathrm{~g}, 10 \mathrm{mmol})$ in pyridine $(15 \mathrm{ml})$ was heated under reflux for 6 hours and then allowed to cool. The solid product was washed and recrystallized from ethanol to give white powder. Yield $(2.89 \mathrm{~g}, 91 \%)$, m.p. : $244-246^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1620(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1678(\mathrm{C}=\mathrm{O}), 3174 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.77$ (bm, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 2.76(bm, $2 \mathrm{H}, \mathrm{CH}_{2}$), $2.87\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.55\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}^{2} \mathrm{CH}_{2}\right), 5.14\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{cis}}=10.4 \mathrm{~Hz}, 3^{\prime}-\right.$ Ha), $5.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right) 5.92\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 14.04(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{14} \mathrm{H}_{14} \mathrm{~N}_{4} \mathrm{OS}_{2}$, (318.1), (Calc/ Foud) C (52.81 / 53.12), H (4.40 / 4.63), N (17.60 / 17.92).

General Procedure for Synthesis of Compounds $\left(\mathbf{1 5}_{\mathrm{a}-\mathrm{c}}\right)$
A solution of $6_{b}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and excess of isothiocyanate (2 mmol) in ethanol (10 ml) was boiled under reflux for 4 hours. The product was separated out cooled, filtered off and recrystallized from ethanol.

N-Allyl-2-(3-allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)hydrazinecarbothioamide

 $\left(15{ }_{\mathrm{a}}\right)$:From $6_{b}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and allylisothiocyanate ($0.2 \mathrm{~g}, 2 \mathrm{mmol}$), Yield ($0.28 \mathrm{~g}, 84 \%$), m.p. : $211-213^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1531(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1681(\mathrm{C}=\mathrm{O}), 3201,3244 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.74\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.63(\mathrm{bm}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.79\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.01\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}_{2} \mathrm{CH}_{2}\right), 4.62(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH} 2), 5.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{cis}}=9.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right)$, $5.06\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {trans }}=16.7 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.13\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Jcis}=10.1 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{Ha}\right), 5.17$ (dd, 1h, Jtrans= $\left.17.1 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{Hb}\right)$, $5.86\left(\mathrm{~m}, 1 \mathrm{~h}, 2^{\prime}-\mathrm{H}\right), 5.93\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 8.04(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 9.09(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}), 9.38(\mathrm{~d}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}_{2}$, (375.1), (Calc/ Foud) C (54.39 / 54.78), H (5.60 / 5.22), N (18.66 /18.31).

2-(3-Allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)Nphenylhydrazinecarbothioamide

 $\left(15{ }_{b}\right)$:From $6_{b}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and phenylisothiocyanate ($\left.0.34 \mathrm{~g}, 2 \mathrm{mmol}\right)$, Yield ($0.34 \mathrm{~g}, 81 \%$), m.p. : 247-249${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1620(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1666(\mathrm{C}=\mathrm{O}), 3194 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.75\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, 2.87(bm, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.55\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 5.00\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{cis}}=10.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.26\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\right.$ $\mathrm{Hb}), 5.92\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.12-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.11$ (t, 1H, NH), 9.15 (d, 1H, NH), 9.75 (d, 1H, NH); $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}_{2},(411.1)$, (Calc/ Foud) C (58.38 / 57.91), H (5.11/4.87), N (17.03/16.78).

2-(3-Allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)N-benylhydrazinecarbothioamide

 (15):From $6_{b}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and benzylisothiocyanate $(0.30 \mathrm{~g}, 2 \mathrm{mmol})$, Yield ($0.36 \mathrm{~g}, 85 \%$), m.p. : 221-223${ }^{\circ} \mathrm{C}$; IR
$(\mathrm{KBr}), v=1531,1570(\mathrm{sh})(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1666,3344 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.67(\mathrm{bm}, 2 \mathrm{H}$, CH_{2}), $\left.2.80\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.59\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.76 \mathrm{bt}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH} 2\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right) 5.13(\mathrm{dd}$, $\left.1 \mathrm{H}, J_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.86\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.49(\mathrm{bt}, 1 \mathrm{H}, \mathrm{NH}), 9.18(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 9.48$ (s, $1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=21.8722 .65,24.29,25,18\left(4 \mathrm{CH}_{2}\right), 40.15,40.43,\left(2 \mathrm{NCH}_{2}\right), 130.25,131.91,135.22$, 139.66,(thiophene), 115.31, 132.37 (allyl C=C), 126.39, 126.71, 127.95, 129.9(Ar-Cl, 151.21, 159.11, $166.21(\mathrm{C}=\mathrm{N}$, $\mathrm{C}=\mathrm{O}, \mathrm{C}=\mathrm{S}) ; \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{OS}_{2},(425.1),(\mathrm{Calc} /$ Foud) $\mathrm{C}(59.28 / 58.88), \mathrm{H}(5.41 / 5.13), \mathrm{N}(16.47 / 16.11)$.

General Procedure for Synthesis of Compounds ($\mathbf{1 6}_{\mathrm{a}-\mathrm{d}}$)
A solution of $6_{b}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and excess of isocyanate $(2.5 \mathrm{mmol})$ in ethanol $(15 \mathrm{ml})$ was boiled under reflux for 4 hours. The product was separated out cooled, filtered off and recrystallized from ethanol.

N-allyl-2-(3-Allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)hydrazinecarboxamide (16a):

From $6_{\mathrm{b}}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and allylisocyanate $(0.21 \mathrm{~g}, 2.5 \mathrm{mmol})$, Yield $(0.29 \mathrm{~g}, 80 \%)$, m.p. : $231-233^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1528(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1674(\mathrm{C}=\mathrm{O}), 3367 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.67(\mathrm{bm}, 2 \mathrm{H}$, CH_{2}), $2.79\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.65\left(\mathrm{bt}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.65(\mathrm{bt}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH} 2), 4.98\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{J}_{\mathrm{cis}}=10.1 \mathrm{~Hz}, \mathrm{H}, 3\right.$ '-Ha) 5.06(dd, $1 \mathrm{H}, \mathrm{J}_{\mathrm{cis}}=10.2 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{Ha}$), 5.13 (dd, 1H, Jtrans= $\left.17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Jtrans}=17.1 \mathrm{~Hz}, 3^{\prime \prime}-\mathrm{H}\right), 5.64(\mathrm{~m}, 1 \mathrm{H}$, $\left.2^{\prime}-\mathrm{H}\right), 5.96\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime \prime}-\mathrm{H}\right), 6.57(\mathrm{t}, 1 \mathrm{H}, \mathrm{NH}), 7.90(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=21.87$ 22.63, 24.24, 25, $19\left(4 \mathrm{CH}_{2}\right), 41.28,41.39$, $\left(2 \mathrm{NCH}_{2}\right), 114.13,114.35,130.25,131.94$ (allyl $\left.\mathrm{C}=\mathrm{C}\right), 116.08,126.50$, 136.39, 151.59 (thiophene), 157.31, 159.44, 163.79(C=N, $2 \mathrm{C}=\mathrm{O}$); $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, (359.1), (Calc/ Foud) C (56.81 / 56.42), H (5.85 / 5.49), $\mathrm{N}(19.49 / 19.18)$.

2-(3-allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-N-tollylhydrazinecarboxamide

 (16_{b}):From $6_{\mathrm{b}}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and p-tollylisocyanate $(0.33 \mathrm{~g}, 2.5 \mathrm{mmol})$, Yield ($0.34 \mathrm{~g}, 80 \%$), m.p.: 237-239${ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1603(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1662(\mathrm{C}=\mathrm{O}), 3317 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.74\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right)$, $2.61\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.68\left(\mathrm{bd}, 2 \mathrm{H}, \mathrm{N}^{2} \mathrm{CH}_{2}\right), 5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 5.17(\mathrm{dd}, 1 \mathrm{H}$, $\left.\mathrm{J}_{\text {trans }}=17.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.93(\mathrm{~m}, 1 \mathrm{H}, 2 ;-\mathrm{H}), 7.05(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 7.35(\mathrm{~d}, 2 \mathrm{H}, \operatorname{Ar}-\mathrm{H}), 8.16(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}), 8.61(\mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}), 8.94(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=20.26\left(\mathrm{CH}_{3}\right), 21.85,22.60,24.22,25.18\left(4 \mathrm{CH}_{2}\right), 41.44\left(\mathrm{NCH}_{2}\right), 114.12$, 130.74 (allyl $\mathrm{C}=\mathrm{C}$), 116.27, 126.59, 136.91, 151.61 (thiophene), 118.17, 128.95, 131.80, 137.07 (Ar-C), 156.01, 157.22, $163.62(\mathrm{C}=\mathrm{N}, 2 \mathrm{C}=\mathrm{O}) ; \mathrm{C}_{21} \mathrm{H}_{23} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, (409.1), (Calc/ Foud) C (61.60/61.26), H (5.62/5.41), $\mathrm{N}(17.11 /$ 16.83).

2-(3-allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-N-phenylhydrazinecarboxamide (16):

From $6_{\mathrm{b}}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and phenylisocyanate ($0.30 \mathrm{~g}, 2.5 \mathrm{mmol}$), Yield ($0.32 \mathrm{~g}, 79 \%$), m.p.: $262-264^{\circ} \mathrm{C}$; $\mathrm{C}_{20} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{O}_{2} \mathrm{~S}$, (395.1), (Calc/ Foud) C (60.74 / 60.46), H (5.32 / 5.11), N (17.72 / 17.43).

2-(3-allyl-4-oxo-3,4,5,6,7,8-hexahydro[1]benzothieno[2,3-d]pyrimidin-2-yl)-N-propylhydrazinecarboxamide

 $\left(16_{d}\right)$:From $6_{\mathrm{b}}(0.276 \mathrm{~g}, 1 \mathrm{mmol})$ and propylisocyanate ($0.21 \mathrm{~g}, 2.5 \mathrm{mmol}$), Yield ($0.29 \mathrm{~g}, 82 \%$), m.p.: $262-264^{\circ} \mathrm{C}$; $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{~N} 5 \mathrm{O}_{2} \mathrm{~S}$, (361.1), (Calc/ Foud) C (56.49 / 56.11), H (6.37 / 6.13), N (19.39 / 19.17).

General Procedure for Synthesis of Compounds ($17_{\text {a-f }}$)

A solution of $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and the appropriate aromatic aldehyde (10 mmol) in 30 ml ethanol containing few drops of glacial acetic acid, was boiled under reflux for 3 hours. The product that separated out on cooling was filtered off, dried and crystallized from ethanol.

3-allyl-2-[N^{\prime}-(3-bromo-4-chloro-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3d]pyrimidin-4-one (17_{a}):
From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and 3-bromo-4-fluorobenzaldehyde ($2.03 \mathrm{~g}, 10 \mathrm{mmol}$) as described, Yield ($3.96 \mathrm{~g}, 83 \%$), m.p.: $200-202^{\circ} \mathrm{C}$; IR (KBr), $v=1558(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1616(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1647(\mathrm{C}=\mathrm{O}), 3263 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}$ NMR, $\delta=$ $1.74\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.63\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.60\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.12(\mathrm{bm}, 2 \mathrm{H},=\mathrm{CH} 2), 5.88$ (m, 1H, HC=), 7.43(m, 1H, Ar-H), $7.93(\mathrm{bd}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.28(\mathrm{bd}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.31(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 11.62(\mathrm{~s}, 1 \mathrm{H}, \mathrm{NH})$; $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{BrFN}_{4} \mathrm{OS}$, (461), (Calc/ Foud) C (52.06 / 51.73), H (3.90 / 4.16), N (12.15 / 11.78).

3-allyl-2-[N^{\prime}-(4-methyl-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo \quad [4,5]thieno[2,3-d]pyrimidin-4one (17_{b}):

From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and p-methylbenzaldehyde ($1.20 \mathrm{~g}, 10 \mathrm{mmol}$) as described, Yield ($3.01 \mathrm{~g}, 84 \%$), m.p. : $197-199^{\circ} \mathrm{C}$; IR (KBr), $v=1577,1612$, ($\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}$), 1647, $1678(\mathrm{C}=\mathrm{O}), 3228 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76(\mathrm{~m}$, $4 \mathrm{H}, 2 \mathrm{CH}_{2}$), 2.34($\mathrm{s}, 3 \mathrm{H}, \mathrm{CH}_{3}$), $2.65\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.81\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.59\left(\mathrm{bd}, 2 \mathrm{H}, \mathrm{N}-\mathrm{CH}_{2}\right), 4.82,5.71,5.11,5.15$ $\left(\mathrm{m}, 2 \mathrm{H},=-\mathrm{CH}_{2}\right) 5.95(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}, 5.95(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.23,7.58,7.83(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.28,8.32,(2 \mathrm{~s}, 1 \mathrm{H},=\mathrm{CH})$, $10.43,11.54(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=21.04,21.85\left(\mathrm{CH}_{3}\right.$, syn $\&$ anti), 21.12, 22.61, 23.75, 24.30, 25.02, $25.23\left(4 \mathrm{CH}_{2}\right), 41.59,41.83\left(\mathrm{NCH}_{2}\right), 111.09,114.44,130.33,130.70($ allyl $\mathrm{C}=\mathrm{C}), 115.66,116.20,124.94, \quad 126.35$, $139.19,139.53, \quad 146.20,147.91$ (thiophene), 127.19, 127.62, 129.04, 129.40, 131.54, 132.76, 132.63, 132.81(Ar-C), $149.45,149.98,152.24,157.11,163.72(2 \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}) ; \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{OS},(378.1)$, (Calc/ Foud) C (66.65 / 67.01), H (5.82 / 6.21), N (14.81 / 15.18).

3-allyl-2-[N^{\prime}-(2-nitro-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5] thieno[2,3-d]pyrimidin-4-one (17c):
From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and 2-nitrobenzaldehyde ($1.51 \mathrm{~g}, 10 \mathrm{mmol}$) as described, Yield ($3.56 \mathrm{~g}, 87 \%$), m.p. : 294- $296^{\circ} \mathrm{C}$; IR (KBr), $v=1550,1570,1605(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1658(\mathrm{C}=\mathrm{O}), 1658(\mathrm{C}=\mathrm{O}), 3255 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=$ $1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.63\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.76\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.62\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.82(2 \mathrm{bd}, 2 \mathrm{H}, \mathrm{NCH} 2), 5.00$, $5.15(2 \mathrm{~m}, 2 \mathrm{H},=\mathrm{CH} 2), 5.92(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.60,8.15(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.58,8.80(2 \mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 10.94,11.76(2 \mathrm{~s}, 1 \mathrm{H}$, $\mathrm{NH}) ; \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{O}_{3} \mathrm{~S}$, (409.1), (Calc/ Foud) C (58.67 / 58.39), H (4.64 / 4.28), N (.17.11 / 16.80)

3-allyl-2-[N^{\prime}-(2,3,5,6-tetrafluoro-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4one (17_{d}):
From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and 2,3,5,6-tetrafluorobenzaldehyde ($1.78 \mathrm{~g}, 10 \mathrm{mmol}$) as described. Yield (3.71 g , 85%), m.p. : $215-217{ }^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1562,1600(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1678(\mathrm{C}=\mathrm{O}), 3325 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76$ (bm, $\left.4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.64\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.80\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.75\left(\mathrm{bd}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.13,5.28(2 \mathrm{~d}, 2 \mathrm{H},=\mathrm{CH} 2), 5.92(\mathrm{~m}$, $1 \mathrm{H},=\mathrm{CH} 2), 7.91(\mathrm{~m}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.42(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.53(2 \mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 11.06,11.67(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=$ $21.81,22.55,23.73,24.33,24.95,25.19$ (4CH2), 41.79, 42.11 (NCH2), 106.86, 115.22, $130.42,132.30$ (allyl C=C), $116.45,144.96,147.35$ (thiophene-C), 125.92, 132.30, 134.16, 139.99 (Ar-C), 151.18, 156.84, 163.12 ($2 \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}$); $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~F}_{4} \mathrm{~N}_{4} \mathrm{OS}$, (436.1, (Calc/Foud) C (55.03 / 54.81), H (3.67 / 3.29), N (12.84 / 12.55).

3-allyl-2-[N^{\prime}-(4-methoxy-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4one (17e):

From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and p -anisaldehyde ($2.76 \mathrm{~g}, 10 \mathrm{mmol}$) as described, Yield ($3.47 \mathrm{~g}, 88 \%$), m.p.: 266$268^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1597(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1654(\mathrm{C}=\mathrm{O}), 3209 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.76\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.62(\mathrm{bm}$, $\left.2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.82\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 3.84,3.87\left(2 \mathrm{~s}, 3 \mathrm{H}, \mathrm{OCH}_{3}\right), 4.60,4.83(2 \mathrm{~d}, 2 \mathrm{H}, \mathrm{NCH} 2), 5.12(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH} 2), 5.93(\mathrm{~m}$, $1 \mathrm{H},=\mathrm{CH} 2), 6.98,8.39(\mathrm{~m}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.57,8.70(2 \mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 10.54,11.58(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{21} \mathrm{H}_{22} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S},(394.1)$, (Calc/ Foud) C (63.94 / 64.18), H (5.58 / 5.88), N (14.21 / 13.82).

3-allyl-2-[N'-(4-chloro-benzylidene)-hydrazino]-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (17f):
From $6_{\mathrm{b}}(2.76 \mathrm{~g}, 10 \mathrm{mmol})$ and p-chlorobenzaldehyde ($1.41 \mathrm{~g}, 10 \mathrm{mmol}$) as described, Yield ($3.55 \mathrm{~g}, 89 \%$), m.p. : $194-196^{\circ} \mathrm{C}$; IR (KBr), $v=1600(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1670(\mathrm{C}=\mathrm{O}), 3367 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.75\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right)$, 2.62(bm, $2 \mathrm{H}, \mathrm{CH}_{2}$), 2.81(bm, 2H, $\left.\mathrm{CH}_{2}\right), 4.37\left(\mathrm{bd}, 21, \mathrm{NCH}_{2}\right), 4.61,4.81,5.13(\mathrm{~m}, 2 \mathrm{H},=\mathrm{CH} 2), 5.92(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH})$, $7.48,7.50,7.95,7.99(4 \mathrm{~d}, 4 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.32,8.70(\mathrm{~s}, 1 \mathrm{H},=\mathrm{CH}), 11.25,11.58(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{20} \mathrm{H}_{19} \mathrm{ClN}_{4} \mathrm{OS}$, (398.6), (Calc/ Foud) C (60.21 / 59.85), H (4.77 / 4.51), N(14.05 / 13.88).

3-allyl-1-(3-bromo-4-flurophenyl)-6,7,8,9-tetrahydro[1]benzothieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-

 one (19):A solution of ferric chloride (0.4 gm) in ethanol (5 ml) was added dropwise to a boiling solution of aldehydehydrazones $17_{\mathrm{a}}(0.96 \mathrm{~g}, 2 \mathrm{mmol})$ in ethanol (50 ml). Heating was continued for 30 min . and the mixture was then kept overnight at room temperature. Evaporation of the solvent under reduced pressure, washing the residue with water, drying and crystallized from ethanol to give pale brown crystals. Yield ($0.64 \mathrm{~g}, 70 \%$), m.p. : $169-171^{\circ} \mathrm{C}$; IR $(\mathrm{KBr}), v=1585(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1674 \mathrm{~cm}^{-1}(\mathrm{C}=\mathrm{O}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.74\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.64(\mathrm{bm}, 2 \mathrm{H}$, CH_{2}), $2.86\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.76\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.18(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Jcis}=10.2 \mathrm{~Hz}, 3 \mathrm{H}-\mathrm{Ha}), 5.29(\mathrm{dd}, 1 \mathrm{H}, \mathrm{Jtrans}=17.3 \mathrm{~Hz}$, $\left.3^{\prime}-\mathrm{Hb}\right), 5.96\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.66(\mathrm{~d}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.83(\mathrm{~s}, 1 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 8.16(\mathrm{~d}, 1 \mathrm{H},, \mathrm{Ar}-\mathrm{H}) ;{ }^{13} \mathrm{C}-\mathrm{NMR}, \delta=21.46,22.25$, $23.91,24.33,24.91(4 \mathrm{CH} 2), 43.89$ (NCH 2), $108.53,130.67$ (allyl $\mathrm{C}=\mathrm{C}$), 117.55, 123.52, 138.64, 144.48 (thiophene-
C), $131.26,132.21,132.27,135.61,148.48(\mathrm{Ar}-\mathrm{C}), 155.21,159.07,161.06(2 \mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}) ; \mathrm{C}_{20} \mathrm{H}_{16} \mathrm{BrFN}_{4} \mathrm{OS}$, (459.1), (Calc/ Foud) C (52.28 / 51.91), H (3.49 / 3.11), N (12.20 / 11.87).

General Procedure for Synthesis of Compounds ($\mathbf{2 0}_{\mathrm{a}, \mathrm{b}}$)
A solution of semicarbazides $16_{\mathrm{b}, \mathrm{c}}(1 \mathrm{mmol})$ and sodium hydroxide ($2 \mathrm{~N}, 25 \mathrm{ml}$) was boiled for 1 hour then was cooled and neutralized by addition of hydrochloric acid (2 N). The precipitate formed was collected, washed and crystallized from ethanol.

4-allyl-1-anilino-6,7,8,9-tetrahydro[1]benzothieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin- $\mathbf{5 (4 H)}$-one ($\mathbf{2 0}_{\mathrm{a}}$):
From $16_{\mathrm{c}}(0.41 \mathrm{~g}, 1 \mathrm{mmol})$ as described and undergo white powder, Yield ($0.26 \mathrm{~g}, 69 \%$), m.p.: 201-203${ }^{\circ} \mathrm{C}$. IR $(\mathrm{KBr}), v=1620(\mathrm{C}=\mathrm{C}, \mathrm{C}=\mathrm{N}), 1666(\mathrm{C}=\mathrm{O}), 3194 \mathrm{~cm}^{-1}(\mathrm{NH}) ;{ }^{1} \mathrm{H}-\mathrm{NMR}, \delta=1.77\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.66\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right)$, $2.80\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.66\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.15(\mathrm{bm}, 2 \mathrm{H},=\mathrm{CH} 2), 5.93(\mathrm{~m}, 1 \mathrm{H},=\mathrm{CH}), 7.50,8.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 11.6$ ($6 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}$); $\mathrm{C}_{20} \mathrm{H}_{19} \mathrm{~N}_{5} \mathrm{OS}$, (377.4). (Calc/Foud) C (63.64/63.23), H(5.07/4.83), $\mathrm{N}(18.55 / 18.21$).

4-allyl-1-(4-methylanilino)-6,7,8,9-tetrahydro[1]benzothieno[3,2-e][1,2,4]triazolo[4,3-a]pyrimidin-5(4H)-one

 $\left(20_{b}\right)$:From $16_{\mathrm{b}}(0.42 \mathrm{~g}, 1 \mathrm{mmol})$ as described and undergo white powder, Yield $(0.31 \mathrm{~g}, 68 \%)$, m.p.: $181-183^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR, $\delta=1.68\left(\mathrm{bm}, 4 \mathrm{H}, 2 \mathrm{CH}_{2}\right), 2.22\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.48\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 2.70\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{CH}_{2}\right), 4.53\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $5.11\left(\mathrm{dd}, \mathrm{J}_{\mathrm{cis}}=9.9 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.18\left(\mathrm{dd}, \mathrm{J}_{\text {trans }}=16.8 \mathrm{~Hz}, 3^{\prime}-\mathrm{Hb}\right), 5.87\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right), 7.05(\mathrm{~d}, 2 \mathrm{H}, \mathrm{Ar}-\mathrm{H}), 7.38(\mathrm{~d}, 2 \mathrm{H}$, Ar- H), $7.83,8.32(2 \mathrm{~s}, 1 \mathrm{H}, \mathrm{NH}) ; \mathrm{C}_{21} \mathrm{H}_{21} \mathrm{~N}_{5} \mathrm{OS}$ (391.4). (Calc / Foud) C (64.43 / 64.11), H (5.41 / 5.13), N (17.89 / 18.12) (Figures 1-58).

Figure 1: ${ }^{1} \mathbf{H}-\mathrm{NMR}$ spectrum of $\mathbf{2}_{\mathrm{a}}$ in DMSO- d_{6}

Figure 2: IR spectrum of 2_{a} in $\mathbf{K B r}$

Figure 3: ${ }^{1} \mathbf{H}$-NMR spectrum of $\mathbf{2}_{\mathrm{b}}$ in DMSO-d \mathbf{d}_{6}

Figure 4: IR spectrum of 2_{b} in KBr

Figure 5: ${ }^{1} \mathrm{H}$-NMR spectrum of 4_{b} in DMSO- d_{6}

Figure 6: MS spectrum of 4_{b} in DMSO

Figure 7: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{6}_{\mathrm{b}}$ in ${ }^{\text {DMSO- }} \mathrm{d}_{6}$

Figure 8: IR spectrum of 6_{b} in KBr

Figure 9: ${ }^{1} \mathrm{H}$-NMR spectrum of 8_{a} in DMSO-d ${ }_{6}$

Figure 10: IR spectrum of 8_{a} in $\mathbf{K B r}$

Figure 11: ${ }^{1} \mathrm{H}$-NMR spectrum of B_{b} in DMSO-d $_{6}$

Figure 12: ${ }^{1} \mathrm{H}$-NMR spectrum of 9_{a} in DMSO- d_{6}

Figure 13: MS spectrum of $\mathbf{9}_{\mathrm{a}}$ in $\mathbf{K B r}$

Figure 14: ${ }^{1} \mathbf{H}$-NMR spectrum of 9_{b} in DMSO- d_{6}

Figure 15: MS spectrum of 9_{b} in KBr

Figure 16: ${ }^{1} \mathrm{H}$-NMR spectrum of 9_{c} in DMSO-d ${ }_{6}$

Figure 17: ${ }^{13} \mathrm{C}$-NMR spectrum of 269c in DMSO-d ${ }_{6}$

Figure 18: MS spectrum of 9 c in DMSO

Figure 19: IR spectrum of 9_{c} in KBr

Figure 20: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 0}_{\mathrm{a}}$ in DMSO- d_{6}

Figure 21: IR spectrum of 10_{a} in KBr

Figure 22: ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectrum of $\mathbf{1 0}_{\mathrm{b}}$ in DMSO-d $\mathbf{d}_{\mathbf{6}}$

Figure 23: ${ }^{1} \mathrm{H}$-NMR spectrum of 11 in DMSO-d \mathbf{d}_{6}

Figure 24: ${ }^{1} \mathrm{H}$-NMR spectrum of 12 in DMSO-d \mathbf{d}_{6}

Figure 25: ${ }^{13}$ C-NMR spectrum of 12 in DMSO-d 6

Figure 26: IR spectrum of 12 in KBr

Figure 27: ${ }^{1} \mathrm{H}$-NMR spectrum of 13 in DMSO-d \mathbf{d}_{6}

Figure 28: IR spectrum of 13 in $\mathbf{K B r}$

Figure 29: ${ }^{1} \mathrm{H}$-NMR spectrum of 14 in DMSO-d \mathbf{d}_{6}

Figure 30: IR spectrum of 14 in $\mathbf{K B r}$

Figure 31: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathrm{15}_{\mathrm{a}}$ in DMSO- d_{6}

Figure 32: IR spectrum of 15_{a} in KBr

Figure 33: ${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of $\mathbf{1 5}_{\mathrm{b}}$ in DMSO-d ${ }_{6}$

Figure 34: IR spectrum of 15_{b} in KBr

Figure 35: ${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of $\mathbf{1 5}_{\mathrm{c}}$ in DMSO-d ${ }_{6}$

Figure 36: ${ }^{13} \mathrm{C}$-NMR spectrum of 15 c in $\mathrm{DMSO}_{\mathbf{-}}{ }_{6}$

Figure 37: IR spectrum of $\mathbf{1 5}_{\mathrm{c}}$ in KBr

Figure 38: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 6}_{\mathrm{a}}$ in DMSO-d ${ }_{6}$

Figure 39: ${ }^{13} \mathrm{C}$-NMR spectrum of $\mathbf{1 6}_{\mathrm{a}}$ in DMSO- d_{6}

Figure 40: IR spectrum of $\mathbf{1 6}_{\mathrm{a}}$ in KBr

Figure 41: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 6}_{\mathrm{b}}$ in $\mathrm{DMSO}_{\mathbf{-}}{ }_{6}$

Figure 42: IR spectrum of $\mathbf{1 6}_{b}$ in KBr

Figure 43: ${ }^{1} \mathrm{H}$-NMR spectrum of 17_{a} in DMSO-d ${ }_{6}$

Figure 44: IR spectrum of 17_{a} in KBr

Figure 45: ${ }^{\mathbf{1}} \mathrm{H}$-NMR spectrum of $\mathbf{1 7}_{\mathrm{b}}$ in DMSO-d ${ }_{6}$

Figure 46: IR spectrum of $17^{\text {b }}$ in KBr

Figure 47: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 7}_{\mathrm{c}}$ in DMSO-d ${ }_{6}$

Figure 48: IR spectrum of 17_{c} in KBr

Figure 49: ${ }^{1} \mathbf{H}$-NMR spectrum of $\mathbf{1 7}_{\mathrm{d}}$ in DMSO-d ${ }_{6}$

Figure 50: ${ }^{1} \mathbf{H}$-NMR spectrum of 17_{e} in DMSO-d ${ }_{6}$

Figure 51: IR spectrum of 17_{e} in KBr

Figure 52: ${ }^{1} \mathrm{H}$-NMR spectrum of $\mathbf{1 7}_{\mathrm{f}}$ in $\mathrm{DMSO} \mathrm{d}_{6}$

Figure 53: ${ }^{1} \mathrm{H}$-NMR spectrum of 19 in DMSO-d \mathbf{d}_{6}

Figure 54: ${ }^{13} \mathbf{C}$-NMR spectrum of 19 in DMSO-d ${ }_{6}$

Figure 55: IR spectrum of 19 in $\mathbf{K B r}$

Figure 56: ${ }^{\mathbf{1}} \mathbf{H}-\mathrm{NMR}$ spectrum of $\mathbf{2 0}_{\mathrm{a}}$ in DMSO-d ${ }_{6}$

Figure 57: IR spectrum of 20_{a} in $\mathbf{K B r}$

Figure 58: ${ }^{\mathbf{1}} \mathbf{H}$-NMR spectrum of $\mathbf{2 0}_{\mathrm{b}}$ in DMSO-d ${ }_{6}$

RESULTS AND DISCUSSION

The starting enamino ester, Ethyl- 2-amino-4,5-dimethylthiophene-3-carboxylate 1_{a} and Ethyl- 2-amino-4,5,6,7-tetrahydrobenzo[b]thiophene-3-carboxylate 1_{b} are prepared according to Karel Gewald procedure [28]. Their reactions with thiourea or potassium thiocyanate in dioxane gave the corresponding thienopyrimidines $3_{\mathrm{a}, \mathrm{b}}$. Subsequent methylation with dimethylsulphate and aqueous NaOH afforded corresponding 2-methylthio derivatives $5_{\mathrm{a}, \mathrm{b}}$ which upon nucleophilic displacement of the SMe group with hydrazine hydrate furnished the respective hydrazino derivatives $7_{\mathrm{a}, \mathrm{b}}$. On the other hand, addition of allylisothiocyanate to 2 - aminothiophene derivatives $1_{\mathrm{a}, \mathrm{b}}$ gave the corresponding thiourea derivatives $2_{a, b}$ which are followed by alkaline cyclization with 2 N sodium hydroxide to thienopyrimidine 4_{b}. Subjection of 4_{b} to hydrazine hydrate resulted in the formation of the 3-allyl-2hydrazinothienopyrimidin derivative 6_{b} (Scheme 1). It is necessary to emphasize that the compounds, 1, 3, 5 and 7 were previously synthesized according to literatures [29] and were used for other purposes.
The structure proposal of the prepared compounds was derived from the analytical data (${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR) and satisfactory elemental analyses. For example the most characteristic bands of IR spectrum in KBr appeared in the range $\bar{v}=1651-1680 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ groups and $\bar{v}=3201-3303 \mathrm{~cm}^{-1}$ corresponding to NH groups. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of Ethyl 2-(3-allylthioureido)-4,5-disubstituted thiophene-3-carboxylate ($2_{\mathrm{a}, \mathrm{b}}$) are in accordance with their structures, The ethyl group for $\left(-\mathrm{COOCH}_{2} \mathrm{CH}_{3}\right)$ showed two bands, the first appeared as triplet at $\delta=1.32 \mathrm{ppm}$ with coupling constant $J=7.3 \mathrm{~Hz}$ and integration equal to 3 protons for $\left(-\mathrm{CH}_{3}\right)$, the second displayed as quartet at higher chemical shift $\delta=4.30 \mathrm{ppm}$ with coupling constant $J=7.2 \mathrm{~Hz}$ and integration equal to 2 protons for ($-\mathrm{CO}-\mathrm{CH}_{2^{-}}$) group, as they deshielded with oxygen atoms, the other two remaining methyl groups of compound $2_{\text {a }}$ displayed as two singlet peaks at $\delta=2.18,2.19 \mathrm{ppm}$. Compound 2_{b} showed three broad bands at $\delta=1.71,2.56,2.72 \mathrm{ppm}$ for 4 H , 2 H , and 2 H respectively, while its allyl group in $\mathrm{N}-3$ position displayed as follow: $\delta=4.25\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.29(\mathrm{q}$, $\left.2 \mathrm{H}, j=7.1 \mathrm{~Hz}, \mathrm{CH}_{2}\right), 5.20\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.5 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.88\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, in addition of two singlet peaks at $\delta=9.57,11.52 \mathrm{ppm}$ for 2 NH groups. The mass spectra exhibited ion molecular peak $\left[\mathrm{M}^{+}\right]$at $\mathrm{m} / \mathrm{z}=324$ corresponding to molecular formula $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right]$ of compound 2_{b}.
The ${ }^{1} \mathrm{H}$-NMR spectrum of 3-Allyl-2-mercapto-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3- d]pyrimidin-4-one 4_{b} showed three multiplet bands at $\delta=1.80,2.77,2.86 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively while its allyl group in N 3 position appeared at $\delta=4.57\left(\mathrm{bd}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 5.31\left(\mathrm{bm}, 2 \mathrm{H}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.91\left(\mathrm{bm}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}_{\mathrm{b}}\right)$, beside one band at $\delta=14.08 \mathrm{ppm}$ for NH group and its molecular ion $\operatorname{peak}\left[\mathrm{M}^{+}\right]$at $\mathrm{m} / \mathrm{z}=278$ corresponding to formula $\left[\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{~S}_{2}\right]$.

Reagents and conditions: i)Morpholin, $\mathrm{EtOH}, 60^{\circ} \mathrm{C}$; ii) $\mathrm{CH}_{2}=\mathrm{CH}-\mathrm{CH}_{2} \mathrm{NCS}, \mathrm{EtOH}, \Delta$; iii) KSCN , dioxan, $\mathrm{EtOH}, \mathrm{HCl}, \Delta$; iv $) \mathrm{NaOH}(\mathrm{aq}$.), Δ, $\left.\mathrm{HCl} ; \mathbf{v}) \mathrm{NaOH}(\mathrm{aq}),.\left(\mathrm{CH}_{3}\right)_{2} \mathrm{SO} ; \mathbf{v i}\right) \mathrm{NH}_{2} \mathrm{NH}_{2} . \mathrm{H}_{2} \mathrm{O}, \mathrm{EtOH}, \Delta$.

Scheme 1: 3-allyl-2-hydrazinothienopyrimidin derivative
The resulted data of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of starting materials 3-Allyl-2-hydrazino-5,6,7,8-tetrahydro- 3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one $\left(6_{\mathrm{b}}\right)$ showed three multiplet bands at $\delta=1.74,2.61,2.80 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively in addition of allyl group bands at $\delta=4.58\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right), 4.98\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $5.11\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.83\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$ beside bands of hydrazino group at $\delta=4.35,8.23 \mathrm{ppm}$ corresponding to $(2 H)$ and $(1 \mathrm{H})$. Starting materials 2-hydrazinyl-5,6-disubstitutedthieno[2,3-d]pyrimidin-4(3H)-one $\left(7_{a, b}\right)$ condensed with various one-carbon donors, for instance, they reacted with isocyanates and isothiocyanates to provide the corresponding semi and thiosemicarbazides $8_{\mathrm{a}, \mathrm{b}}$ and $10_{\mathrm{a}, \mathrm{b}}$ respectively. Condensation of $7_{\mathrm{a}, \mathrm{b}}$ with acetophenone derivatives in the presence of few drops of acetic acid furnished the corresponding hydrazones $9_{\mathrm{a}-\mathrm{c}}$. Starting compound 7_{b} condensed with 2,4-pentadione resulted in the formation of the corresponding pyrazole derivative 11 in good yield (Scheme 2). The constitution of the prepared compounds was secured by their NMR, IR, and MS spectra, for instance, ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 8_{a} showed three bands at $\delta=1.75,2.65,2.70 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively besides five protons of phenyl group appeared in three bands $\delta=6.96,9.22,11.80,12.02 \mathrm{ppm}$ corresponding to four NH group. Acetophenone hydrazone compounds $9_{\mathrm{a}-\mathrm{c}}$ showed absorbance in IR spectra at $v=$ $1662-1668 \mathrm{~cm}^{-1}$ for stretching $\mathrm{C}=\mathrm{O}$ group and absorbance peak at $v=3228-33.77 \mathrm{~cm}^{-1}$ for NH group. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 9 a displayed three bands at $\delta=1.77,2.52,2.82 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively besides one singlet band at $\delta=2.32 \mathrm{ppm}$ for methyl group, in addition to five protons of phenyl group appeared in the range $\delta=7.43$ 8.0 ppm while the protons of NH group resonate at $\delta=10.62,10.91 \mathrm{ppm}$, the structure is finally mass spectra showed molecular ion peak $\left[\mathrm{M}^{+}\right]$at $\mathrm{m} / \mathrm{z}=338$ closed with formula $\left[\mathrm{C}_{18} \mathrm{H}_{18} \mathrm{~N}_{4} \mathrm{OS}\right]$.

Comp.	R1 R2	R3	Ar
8 a	$\left(\mathrm{CH}_{2}\right)_{4}$	$\mathrm{C}_{6} \mathrm{H}_{5}$	-----
8 b	$\left(\mathrm{CH}_{2}\right)_{4}$	$\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{3}$	-----
9 a	$\left(\mathrm{CH}_{2}\right)_{4}$	-----	$\mathrm{C}_{6} \mathrm{H}_{5}$
9 b	$\left(\mathrm{CH}_{2}\right)_{4}$	-----	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
9 c	$\mathrm{CH}_{3} \mathrm{CH}_{3}$	-----	$4-\mathrm{Cl}-\mathrm{C}_{6} \mathrm{H}_{4}$
10 a	$\left(\mathrm{CH}_{2}\right)_{4}$	$\mathrm{CH}_{2} \mathrm{CH}=\mathrm{CH}_{2}$	-----
10 b	$\left(\mathrm{CH}_{2}\right)_{4}$	$\mathrm{CH}_{2}-\mathrm{C}_{6} \mathrm{H}_{5}$	----
11	$\left(\mathrm{CH}_{2}\right)_{4}$	-----	-----

Reagents and conditions: i) $\mathrm{ArCOCH}_{3}, \mathrm{EtOH}, \Delta$; ii) $\mathrm{R}^{3} \mathrm{NCO}, \mathrm{EtOH}, \Delta$; iii) $\mathrm{R}^{3} \mathrm{NCS}, \mathrm{EtOH}, \Delta$;
iv) $\left(\mathrm{CH}_{3} \mathrm{CO}\right)_{2} \mathrm{CH}_{2}, \Delta$.

Scheme 2: Pyrazole derivative

Similarly ${ }^{1} \mathrm{H}$-NMR spectrum of 9_{b} exhibited three bands at $\delta=1.78,2.66,2.76 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively besides one singlet band at $\delta=2.32 \mathrm{ppm}$ for methyl group, in addition to four protons of phenyl group showed two doublet bands in model AA' $\mathrm{XX'}^{\prime}$ at $\delta=7.46 \mathrm{ppm}$ for ($\mathrm{H}-2^{\prime}, \mathrm{H}^{\prime}-6^{\prime}$) with coupling constant $J=8.6 \mathrm{~Hz}$, the other two aryl protons (H-3', H-5') appeared at $\delta=8.05 \mathrm{ppm}, J=8.6 \mathrm{~Hz}$, the remaining two protons for NH group showed two singlet bands at $\delta=10.65,11.01 \mathrm{ppm}$, the structure also confirmed by The ${ }^{13} \mathrm{C}$-NMR spectrum measured in DMSO- d_{6} showed all 18 carbons of compound 9_{b}, one absorption band at $\delta=14.5$ for CH_{3} group, and three bands at $\delta=22.1,23.3,24.8,25.9$ corresponding to $\left(4 \mathrm{CH}_{2}\right)$ groups in addition of four bands for thiophene ring at $\delta=111.27$, 117.01, 127.21, 134.29, while the aryl carbons appeared at $\delta=114.14,119.88,128.98,130.98 \mathrm{ppm}$. In addition of three absorption bands at $\delta=148.85,150.74,159.13$ corresponding to $(2 \mathrm{C}=\mathrm{N})$ and $(\mathrm{C}=\mathrm{O})$ respectively. Finally mass spectra showed molecular ion peak $\left[\mathrm{M}^{+}\right]$at $\mathrm{m} / \mathrm{z}=372$ closed with formula [$\left.\mathrm{C} 18 \mathrm{H} 17 \mathrm{ClN}_{4} \mathrm{OS}\right]$.
${ }^{1} \mathrm{H}$-NMR spectrum of 9_{c} displayed three bands at $\delta=2.28,2.30,2.35 \mathrm{ppm}$ for 3 methyl groups, beside absorption doublet bands at $\delta=7.48,8.06$ with coupling constant $J=8.6 \mathrm{~Hz}$ corresponding to 4 protons of aryl group, in addition of two bands at $\delta=10.65,11.03 \mathrm{ppm}$ for 2 NH group. The structure also confirmed with ${ }^{13} \mathrm{C}$-NMR spectrum which showed all 16 carbons of compound 9_{c}, it gave three absorption bands at $\delta=12.71,13.31,14.50$ ppm for $3 \mathrm{CH}_{3}$ groups, while the absorption bands of thiophene carbons appeared at $\delta=111.27,119.06,128.06$, 136.92 ppm in addition of four absorption bands of aryl carbons appeared at $\delta=114.14,117.18,128.61,128.74$ ppm . Furthermore three bands at $\delta=150.75,158.37,159.52$ corresponding to $(2 \mathrm{C}=\mathrm{N})$ and $(\mathrm{C}=\mathrm{O})$ respectively, also
mass spectra showed molecular ion peak $\left[\mathrm{M}^{+}\right]$at $\mathrm{m} / \mathrm{z}=346$ identical with formula $\left[\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{ClN}_{4} \mathrm{OS}\right]$. For thiosemicarbazide compounds $10_{\mathrm{a}, \mathrm{b}}$ showed IR absorption $\bar{v}=1693 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ groups and absorption peaks around $\bar{v}=3120,3336 \mathrm{~cm}^{-1}$ for NH groups. The resulted data of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 10_{a} showed three multiplet bands at $\delta=1.82,2.66,2.86 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively in addition of one band at $\delta=4.92$ for NCH_{2} group while protons of allyl appeared as follow: $\delta=5.17\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {cis }}=10.0 \mathrm{~Hz}, 3^{\prime}-\mathrm{Ha}\right), 5.31\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.3 \mathrm{~Hz}\right.$, $\left.3^{\prime}-\mathrm{Hb}\right), 6.06\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, the protons of 4 NH groups resonate at $\delta=7.27,8.21,9.30,12.77 \mathrm{ppm}$.
The resulted data of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of 10_{b} showed three multiplet bands at $\delta=1.85,2.64,2.88 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively in addition of one broad band at $\delta=4.75$ for NCH_{2} group while protons of aryl group appeared multiplet around $\delta=7.27 \mathrm{ppm}$. In addition of four bands for NH appeared at $\delta=7.41,8.49,8.79$ and 11.25 ppm .
For compound 11 showed its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed three multiplet bands at $\delta=1.83,2.72,2.89 \mathrm{ppm}$ for 4 H , 2 H , and 2 H respectively in addition of two singlet bands at $\delta=2.32$ and 2.56 ppm for $2 \mathrm{CH}_{3}$ groups in addition of two protons of pyrazole ring absorbed at $\delta=6.24 \mathrm{ppm}$ in addition of other absoprption band at $\delta=11.77 \mathrm{ppm}$ for one proton of NH group. See experimental part.

Synthesis of Triazolo-thienopyrimidine Derivatives

Starting material 3-Allyl-2-hydrazino-5,6,7,8-tetrahydro-3H-benzo[4,5]thieno[2,3-d]pyrimidin-4-one (6_{b}) condensed with various one-carbon donors such as acetic acid, formic acid, triethylorthoformate, isothiocyanates, isocyanates, carbondisulphide and aldehydes to give poly condensed triazolo-thienopyrimidine derivatives. For instance, treatment of the hydrazino compound 6_{b} with formic acid or triethylorthoformate gave exclusively the product angular triazolo-thienopyrimidine (272), since $\mathrm{N}-3$ is blocked by allyl group, while it reacted with glacial acetic acid or triethylorthoacetate to provide methyl substituted triazolo- thienopyrimidine derivative (273), while 6_{b} refluxed with alcoholic solution of carbon disulphide in the presence of pyridine resulted in the formation of mercaptotriazolo- thienopyrimidine (274). Addition of isocyanates and isothiocyanates to starting material (6_{b}) provide the corresponding semi and thiosemi-carbazides $276_{\mathrm{a}-\mathrm{d}}$ and $275_{\mathrm{a}-\mathrm{c}}$ respectively. An expected cyclization of semi-carbazide derivatives take place upon treatment of compounds $276_{\mathrm{a}-\mathrm{d}}$ with a solution of $\mathrm{NaOH}(2 \mathrm{~N})$ to provide amino-triazolothienopyrimidines $270_{\mathrm{a}, \mathrm{b}}$, while treatment of thiosemi-carbazode with $\mathrm{NaOH}(2 \mathrm{~N})$ didn't provide an expected cyclization, all derivatives gave mercaptotriazolo-thienopyrimidine (274). Condensation of 266_{b} with aromatic aldehydes furnished the corresponding hydrazones ($277_{\mathrm{a}-\mathrm{f}}$). Dehydrogenative cyclization of 277_{a} by ethanolic FeCl_{3} solution afforded the triazolothienopyrimidines 279 (Scheme 3).
The constitution of the prepared compounds was secured by their NMR, IR, and MS spectra, for instance, compound 272 showed absorbance in IR spectra at $v=1666 \mathrm{~cm}^{-1}$ for stretching $\mathrm{C}=\mathrm{O}$ group while no any appearance of any stretched absorbance peak for NH group. Its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed three bands at $\delta=1.78,2.75,2.85 \mathrm{ppm}$ for $4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively for aliphatic ring, protons of allyl group appeared as follow: $\delta=4.72\left(\mathrm{bm}, 2 \mathrm{H}, \mathrm{NCH}_{2}\right)$, $5.15\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{cis}}=10.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right), 5.24\left(\mathrm{dd}, 1 \mathrm{H}, J_{\mathrm{trans}}=17.3 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.93\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, finally the proton of triazole ring resonate at $\delta=9.12 \mathrm{ppm}$. the structure of compound 272 also confirmed by ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum measured in DMSO- d_{6} showed 4 absorption bands at $\delta=21.28,22.21,24.01,24.928 \mathrm{ppm}$ for carbons of aliphatic ring while allyl group absorption appeared at $\delta=43.89\left(\mathrm{NCH}_{2}\right), 117.31,132.36(\mathrm{C}=\mathrm{C})$ in addition of 4 absorption bands at $\delta=130.11,131.28,135.43,138.25 \mathrm{ppm}$ corresponding to carbons of thiophene ring, furthermore 3 bands at $\delta=145.62,147.59,155.13 \mathrm{ppm}$ for $2 \mathrm{C}=\mathrm{N}$ and $\mathrm{C}=\mathrm{O}$ groups respectively. The structure proposal of compound 273 was derived from the analytical data (${ }^{1} \mathrm{H}-\mathrm{NMR}, \mathrm{IR}$) and satisfactory elemental analyses (see experimental part). The compound mercaptotriazole 274 showed absorbance in IR spectra at $v=1678 \mathrm{~cm}^{-1}$ for $\mathrm{C}=\mathrm{O}$ group also ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum showed singlet absorption band at $\delta=14.04 \mathrm{ppm}$ for NH group. In other hand, thiosemi-carbazide derivatives $275_{\mathrm{a}-\mathrm{c}}$ exhibit absorption bands for IR spectra in the range $v=1666-1681 \mathrm{~cm}^{-1}$ for carbonyl $\mathrm{C}=\mathrm{O}$.
The structures also confirmed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectra for instance compound 275_{c} showed three multiplet broad bands at $\delta=1.76,2.67,280 \mathrm{ppm}$ corresponding to four CH_{2} groups of aliphatic ring $(4 \mathrm{H}, 2 \mathrm{H}$, and 2 H respectively), while allyl group appeared as follow: $\delta=4.76$ (bt, $2 \mathrm{H}, \mathrm{NCH}_{2}$), $5.05\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {cis }}=10.1 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{a}}\right)$, $5.13\left(\mathrm{dd}, 1 \mathrm{H}, J_{\text {trans }}=17.2 \mathrm{~Hz}, 3^{\prime}-\mathrm{H}_{\mathrm{b}}\right), 5.86\left(\mathrm{~m}, 1 \mathrm{H}, 2^{\prime}-\mathrm{H}\right)$, while the protons of benzoyl group appeared at $\delta=4.59$ (bt, $2 \mathrm{H}, \mathrm{NCH}_{2}$), $7.20-7.35(\mathrm{~m}, 5 \mathrm{H}, \mathrm{ph}-\mathrm{H})$, in addition of three absorption bands for NH groups two of them showed singlet absorption at $\delta=9.47,9.17 \mathrm{ppm}$ while the remaining one appeared triplet at $\delta=8.52 \mathrm{ppm}$.
${ }^{13} \mathrm{C}-\mathrm{NMR}$ spectrum measured in DMSO- d_{6} showed 4 absorption signals at $\delta=21.87,22.65,24.29,25.18 \mathrm{ppm}$ for aliphatic carbons ring and two absorption lines for NCH_{2} at $\delta=40.15,40.43 \mathrm{ppm}$ in addition of four absorption bands at $\delta=130.25,131.91,135.20,139.60 \mathrm{ppm}$ corresponding to thiophene ring carbons and two absorption lines at $\delta=115.31,132.37 \mathrm{ppm}$ for sp^{2} allyl carbon atoms while phenyl carbons appeared at $\delta=126.39,126.71,127.95$, 129.90 ppm followed by three signals at $151.21,159.11$ and 166.21 corresponding to $\mathrm{C}=\mathrm{N}, \mathrm{C}=\mathrm{O}$ and $\mathrm{C}=\mathrm{S}$ respectively.

Reagents and conditions: i) HCOOH , or $\mathrm{HC}(\mathrm{OEt})_{3}, \Delta$; ii) $\mathrm{CH}_{3} \mathrm{COOH}$, or $\mathrm{CH}_{3} \mathrm{C}(\mathrm{OEt})_{3}, \Delta$; iii) CS_{2}, pyridine, Δ; iv) $2 \mathrm{~N} \mathrm{NaOH}, \Delta, \mathrm{HCl}$; v) $\mathrm{RNCS}, \mathrm{EtOH}, \Delta$; vi) $\mathrm{RNCO}, \mathrm{EtOH}, \Delta$; vii) $\mathrm{RCHO}, \mathrm{EtOH}, \Delta$; viii) $\mathrm{FeCl}_{3}, \mathrm{EtOH}, \Delta$

Scheme 3: Condensation of 266b with aromatic aldehydes
While the semi-carbazide compounds $276_{\mathrm{a}-\mathrm{d}}$ showed IR absorption bands around $v=1674 \mathrm{~cm}^{-1}$ for carbonyl $\mathrm{C}=\mathrm{O}$ and $v=3367 \mathrm{~cm}^{-1}$ for NH group, the structures also confirmed by ${ }^{1} \mathrm{H}$-NMR and ${ }^{13} \mathrm{C}$-NMR spectra for instance compound $27 \mathrm{a}_{\mathrm{a}}$ showed three multiplet absorption bands of four CH_{2} groups at $\delta=1.76,2.67,2.79 \mathrm{ppm}$, while two allyl groups appeared as follow: first group at $\delta=3.65,4.98,5.06,5.86(5 \mathrm{H})$, and second group at $\delta=4.65,5.20$, $5.60,5.95(5 \mathrm{H})$ in addition of three absorption bands for NH groups at $\delta=6.56,7.90,8.83 \mathrm{ppm}$.
${ }^{13} \mathrm{C}$-NMR spectrum measured in DMSO $-\mathrm{d}_{6}$ showed four absorption lines for four sp^{3} carbon atoms at $\delta=21.87$,
22.63, 24.24, 25.19 ppm in addition of four bands for allyl sp^{2} carbon atoms at $\delta=114.13,114.35,130.25,131.54$ ppm furthermore other four bands corresponding to four sp^{2} thiophene carbon atoms at $\delta=116.08,126.50,136.39$, 151.59 ppm , while $\mathrm{C}=\mathrm{N}$ and $2 \mathrm{C}=\mathrm{O}$ showed absorption bands at $\delta=157.31,159.44,163.79$ respectively. The structure proposal of the prepared aldehydehydrazones $277_{\text {a-f }}$ were derived from the analytical data $\left({ }^{1} \mathrm{H}\right.$ NMR, ${ }^{13} \mathrm{C}$ NMR, IR) and satisfactory elemental analyses, for instance IR spectra showed absorption at $v=1647-1678 \mathrm{~cm}^{-1}$ for carbonyl $\mathrm{C}=\mathrm{O}$ and around $v=3317 \mathrm{~cm}^{-1}$ for NH group. The ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectra of the hydrazones $277_{\mathrm{a}-\mathrm{f}}$ indicated their existence as a mixture of the two conformations Syn- and Anti-isomers as indicated by the presence of two doublets for $\mathrm{HC}=\mathrm{N}$ proton. The analytical data of compound 279 proved that dehydrogenative cyclization of 277_{a} by ethanolic solution of FeCl_{3} took place, its ${ }^{1} \mathrm{H}-\mathrm{NMR}$ showed three absorption bands of four CH_{2} groups of aliphatic rings at $\delta=1.76,2.64,2.86 \mathrm{ppm}$, in addition of three absorption lines of allyl group appeared at $\delta=4.76,5.18,5.29$, $5.96(5 \mathrm{H})$, while the three protons of aryl group appeared at $\delta=7.66,7.83$, and 8.16 ppm with the disappearance of protons of NH and imine $\mathrm{N}=\mathrm{CH}-\mathrm{Ar}$ groups, ${ }^{13} \mathrm{C}-\mathrm{NMR}$ and elemental analysis also confirmed the structure of compound 279.

CONCLUSION

${ }^{1} \mathrm{H}$-NMR spectra showed the presence of only one NH group in compound 280_{a} indicate to dehydrogenation cyclization of compound 276_{c} while ${ }^{1} \mathrm{H}-\mathrm{NMR}$ of compound 280_{b} showed there's an endo \& exo equilibrium of NH group and thiazole ring.

REFERENCES

[1] RV Chambhare; BG Khadse; AS Bobde; RH Bahekar. Eur J Med Chem. 2003, 38, 89.
[2] G Mangalagiu; M Ungureanu; G Grosu; I Mangalagiu; M Petrovanu. Ann Pharm Fr. 2001, 59, 139.
[3] MN Nasr; MM Gineinah. Arch Pharm. 2002, 335, 289.
[4] MS El-Gaby; SG Abdel-Hamide; MM Ghorab; MS El-Sayed. Acta Pharm. 1999, 49, 149.
[5] PG Baraldi; MG Pavani; M Nunez; P Brigidi; B Vitali; R Gambari; R Romagnoli. Bioorg Med Chem. 2002, 10, 449.
[6] M Modica; M Santagati; A Santagati; V Cutuli; N Mangano; A Caruso. Pharmazie. 2000, 55, 500.
[7] G Romeo; F Russo; A Caruso; V Cutuli; M Amico-Roxas. Arzneim Forsch. 1998, 48, 167.
[8] CJ Shishoo; VS Shirsath; IS Rathod; MJ Patil; SS Bhargava. Arzneim Forsch. 2001, 51, 221.
[9] E Bousquet; G Romero; F Guerrera; A Caruso; MA Roxas. Farmaco Ed Sci. 1989, 40, 869.
[10] G Wagner; H Vieweg; S Leistner. Pharmazie. 1993, 48, 667.
[11] AS Oganisyan; AS Noravyan; IA Dzhagatspanyan; AG Akopyan. Pharm Chem J. 2001, 35, 127.
[12] M Guetschow; K Droessler; S Leistner. Arch Pharm. 1995, 328, 231.
[13] O Bruno; C Brullo; S Schenone; A Ranise; F Bondavalli; E Barocelli; M Tognolini; F Magnanini; V Bollabeni. Farmaco. 2002, 57, 753.
[14] AS Oganisyan; AS Noravyan; IA Dzhagatspanyan; AG Akopyan. Pharm Chem J. 2001, 35, 650.
[15] HM Hosni; WM Basyouni; HA El-Nahaszb. J Chem Res. 1999, 646.
[16] AK Chakraborti; B Gopalakrishnan; ME Sobhia; A Malde. Bioorg Med Chem Let. 2003, 13, 1403.
[17] M Crespo; L Pages; A Vega; V Segarra; M Lopez; T Domenech; M Miralpeix; J Beleta; H Ryder; JM Palacios. J Med Chem. 1998, 41, 4021.
[18] IO Donkor; H Li; SF Queener. Euro J Med Chem. 2003, 38, 605.
[19] MJ Munchhof; JS Beebe; JM Casavant; BA Cooper; JL Doty; RC Higdon; SM Hillerman; CI Soderstrom; EA Knauth; MA Marx; AM Rossi; SB Sobolov; J Sun. Bioorg Med Chem Let. 2004, 14, 21.
[20] A Panico; V Cardile; A Santagati; B Gentile. Farmaco. 2001, 56, 959.
[21] AK Oganisyan; AS Noravyan; IA Dzhagatspanyan; GG Melikyan. Pharm Chem J. 2003, 37, 1.
[22] FA El-Saied; TA Salem; AA Hamed; AS Radwan; HH Alganzory. Smart Nanocomposites. 2012, 3, 137156.
[23] SA Aly; HH Alganzory; TA Salem. J Chem Pharm Res. 2014, 6, 101-109.
[24] HH Alganzory; MMH Arief; MS Amine; EM Ebeid. J Chem Pharm Res. 2014, 6, 143-161.
[25] HH Alganzory; WA El-Sayed; MH Arief; MS Amine; EM Ebeid. Green Chem Lett Rev. 2017, 10, 10-22.
[26] SA Aly; HH Alganzory; TA Salem. Eur Chem Bull. 2016, 5, 390-398.
[27] AA Hamed; IF Zeid; HH El-Ganzory; MT Abdel Aal. Monatsh Chem. 2008, 139, 809.
[28] K Gewald; E Schinke; H Bottcher. Chem Ber. 1966, 99, 94.
[29] AA Hamed; HF Badr; EH El-Ashry; Z Naturforsch. 2001, 56, 826.

