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ABSTRACT

Drug-target interaction (DTI) provides novel insighabout the genomic drug discovery. The wet exyaris of
identifying DTls are time-consuming and costly. &ely, the increase of available data providesabgortunity to
the development of computational methods. Althaughy computational methods have been proposed @sich
classification-based methods, graph-based methodd aetwork-based methods), there is still room for
improvements. On one hand, there are much moreinteraction drug-target pairs than interaction psjrand the
classification-based methods are undermined bynifialanced data and heavy computational burdenth@rother
hand, the graph-based methods and the network-tas#itbds are incapable of predicting the interatsibetween
new drugs and new targets. In the paper, we inyatithe correlation of drugs and targets that iat#, based on
four classes of drug—target interaction data inwody enzymes, ion channels, G-protein-coupled rerepand
nuclear receptors. By exploiting the global infotioa from interaction data, we compile the drugger
interaction networks as the binary classificatioatakets with positive and negative drug-target paifrhen, we
develop a representation of drug-target pairs baseddrug chemical similarity and target sequencnilsirity, and
adopt the random forest as classification engineéudd the prediction models. Compared with theestaf-the-art
methods, our method produces satisfying performancehe benchmark datasets. In general, our mettad
predict the interactions between know drugs andets as well as the interactions between new daungknew
targets. In conclusion, our method is a promisiogl for the drug—target interaction prediction.
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INTRODUCTION

The identification of interactions between drugsl darget (DTIs) proteins plays an important rolettie drug
discovery [1-3]. The high-throughput experimentttanalyze the genome, transcriptome and proteaméelp to
understand the genomic spaces populated by commmeirp classes, and identify potentially useful ponnds.
However, the wet experiments are time-consuming aastly. The boom of bioinformatics promotes the
establishment of drug databases, and the increbs#ata provides the opportunity for the development
computational methods, and the computational methedome an alternative.

The earlier methods are based on the tradition atetipnal techniques. Keiser et al. (2007) [4] ot target
protein families based on the known structures séteof ligands, but may not perform well for tdrgeoteins with
limited number of known ligands. Humberto et alveleped a multi-target QSAR classifier and builtab server
for DTI prediction [5]. Li et al. proposed a doclibased method, and construct a web server naraggisDock'
for DTI identification [6]. However, those traditial methods could not be used when the 3D structofdarget
proteins are not available.

In the last decade, with the rise of informatiochteéique, some intelligent algorithms are adoptegraglict DTls.
Generally, these intelligent methods can be rougjnuped into three types, including the clasdiiicabased
methods, graph-based methods and network-baseddsethhe classification-based methods are trangfgrthe
original problem into a binary classification preisi and develop the machine learning-based predictiodels.
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Graph-based models take DTls as a bipartite, aadhesgraph theory and supervised inference mettoopeedict
DTls. The network-based models adopt the compléxaré algorithm to predict the DTIs.

In 2008, Yamanishi et al.[7] formulated the drugg#d interaction inference as a supervised learpiofplem for a
bipartite graph, and build prediction models byngshearest profile, weighted profile and bipargtaph learning
respectively. More recently, the researchers camedlize that similar drug compounds are likelyrtigract with
similar target proteins (we name it 'similarity mpriple’ in the following context), thus graph-baseddels and
network-based models are developed. Yamanishi.ef8hl(2009) uses bipartite local models to predatget
proteins of a given drug, and to predict drugsetng a given protein. Xia (2010) [9] adopts thenssupervised
method to predict drug-protein interaction fromeregeneous biological spaces. In 2011, Huang [@0%iders the
DTls as the complex network, and adopts the netwaded inference method to predict potential DI&arhoven
(2011) [11] adopts the Gaussian interaction prdfiéenels to predict drug-target interaction. Ch261@) [12]
developed the drug-target interaction predictionrdaydom walk on the heterogeneous network. In 200L2[13]
proposed a systematic binary classification apgrotiat efficiently integrates the chemical, gengmémd
pharmacological information for drug targeting asidcovery on a large scale, by using two machieniag
methods-Random Forest (RF) and Support Vector MactBVM). Chen (2013) [14] proposed A Semi-Supeis
Method for Drug-Target Interaction Prediction wifbonsistency in Networks.

In general, the classification-based models mayefiefrom the sophisticated binary classificatiolyaithms.
However, there are much more non-interaction dauget pairs than interaction pairs. In order tol deth the
imbalance, the known interacting pairs are takepasstive instances, and negative instances okéime number
are extracted from non-binding drug-target paitsisTstrategy may lead to the information loss, anfldence the
performance of prediction models. In contrast, ttuthe use of similarity principle, the graph-baseethods and
network-based methods can yield better performdhae the classification-based models. However, ttaynot
effectively predict interactions between new dr(dysigs not existing in the training set) and nesgets (targets not
existing in the training set). Therefore, the aqgdility of the graph-based methods and networlethasethods are
seriously undermined.

In order to build high-accuracy and useful predictimodels, we should consider some points conagrtiie
drug-target interaction: (1) the similarity print#pncorporates the mechanism of drug-target ioteva, and it is
very important for building prediction models. (Bhe applicability of prediction models is as im@ott as the
accuracy. The powerful method should make predidioo any DTIs, especially the interactions betweew drugs
and new targets. In order to address above issietake following strategies. Firstly, we use tmown DTls as
the positive instances, and adopt the data bopfstrg technique to extract negative instances fnom-interaction
pairs. Then, multiple balanced datasets with binasjances are compiled, which may reduce the rimétion loss
in data processing. Secondly, we develop a noyeksentation of drug-target pairs by consideringgdrthemical
structure similarity and protein sequence simiafthirdly, we adopt the random forest as the diassion engine,
and develop the base classifiers based on the pleultiatasets. Thus, the ensemble model is constiucy
combining based classifiers. Compared with the estéthe-art methods, our method produces satigfyin
performance on the benchmark datasets. In gemenamethod can predict the interactions betweemiahaigs and
targets as well as the interactions between negsdand new targets. In conclusion, our methodpgoaising tool
for the drug—target interaction prediction.

EXPERIMENTAL SECTION

Datasets

There are several databases related with the drggttinteraction, such as the KEGG BRITE [15], BRI [16],
SuperTarget [17] and DrugBank [18]. These databesetain containing experimentally validated DTdad help
to establish the foundation of computational wotkEGG BRITE is a component of KEGG (Kyoto Encycldjze
of Genes and Genomes) database, which can proheleinformation about the protein-protein interactio
BRENDA (http://www.brenda-enzymes.org/) is the maiollection of enzyme functional data. SuperTarget
(http://bioinf-apache.charite.de/supertarget_v2/)ai database collecting information about drugetarglations,
which mainly consists of three different types otitees: drugs, proteins, and side effects. Besid#srmation
about pathways and ontologies can be obtained. Bamig database (http://www.drugbank.ca/) is an irgyar
resource that combines detailed drugs with commtie drug target. The database contains 1455 Fipheaed
small molecule drugs, 131 FDA-approved biotech drard etc.

Yamanishi collects drug-target interaction datarfrabove databases, which are closely relevanttivitinovel drug

development. The data covers four important tapgetein families (enzymes, ion channels, GPCRs rarglear
receptors), and the interaction data can be foredlas four datasets according to protein familiée details of all
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datasets are shown in table 1. Since the datase¢sbeen widely used in the recent studies, theydopted as the
benchmark datasets to evaluate our models and casthparison with benchmark methods.

Table 1. The details of benchmar k datasets

Dataset #Drug| #Target #Interaction Non-Interactiersus Interaction
Enzyme 445 664 2926 99.9843
lon channel 210 204 1476 28.0244
GPCR 223 95 635 32.3622
Nuclear receptor| 54 26 90 14.6000

Basic idea of our method

In this paper, we attempt to predict drug-targétriactions through comparative study of binarysifacstion-based
models, graph-based models and network-based moHgktly, we generate the instances representi t
interacting drug-target pairs and non-interactiaggfrom interaction data, and transform the o@agjiproblem into
the binary classification. Then, we develop an éimap scheme of presenting drug-target pairs as rianectors,
which incorporates the idea that the similar drags likely to interact with similar targets. In erdto build the
high-accuracy prediction models, we adopt the remétirest as the classification engine, and devtéiepensemble
models. The basic idea is shown in FIg.1.

Instance Encoding Ensemble
Generation Scheme learning
Interaction i Binary i Numerical i Ensemble
data instances "I Vectors " models

Figure 1. Theflowchart of our method

The details of compiling binary instances from iatgion data, the encoding scheme and ensemblérgastrategy
are presented in the following context.

Generating instances from interaction data

Here, we formulate the original problem as the hirdassification, by generating binary instanaesf interaction
data. For N drugs and M targets, there are N*M dauget pairs. Clearly, the known interaction paéise a small
proportion of all pairs, and there are a huge nurob@on-interaction pairs. For example, the enzytat includes
292554 non-interaction pairs. The imbalanced argklacale data lead to the heavy computationaldourbh the
related studies, non-interaction pairs are randaelgcted until they reached the same number gsofitve pairs,
thus the balanced dataset are generated. Howéngrsttategy may lead to the information loss aasiehthe
negative impact on the performance of predictionlaha

Here, we adopt data bootstrapping to compile biir@stances. Given the interaction data, the intemaarug-target
pairs are used as the positive instances, andsdatpling is implemented times on the non-interaction pairs to
obtain n subsets with the same size as interaction paiys.c&nbining interaction pairs and subsets of
non-interaction pairs respectively, we can obtaibalanced datasets, which are further used for hmgdeThe
flowchart of generating instances from interactiata is shown by table 2. The strategy can makeotishe
interaction dataset and avoid the data bias.

. Instance

7 set#1

Interaction pairs

Pair
Subset #1

- Pair
7 Subset #1

Interaction
data

Non-Interaction
pairs

Bootstrap -
Pair
Subset #n
Figure 2. Theflowchart of generating instances from interaction data

Vector representation of drug-target pairs
Before building machine learning-based predictiardeis, the drug-target pairs should be represeagadimerical
vectors. To our knowledge, there are a large nurabbteratures in bioinformatics devoted to thenesentation of

1993



Yan Qing Niu J. Chem. Pharm. Res., 2014, 6(7):1991-1999

protein sequences or peptides by various descsipiorfeatures. These descriptors are usually relaith the
physicochemical and structural properties of thdemdes, and can be used to infer models to predigt the
structural or functional class of a protein.

The similarity principle (the similar drugs aredll to interact with similar targets) is widely dsin the recently
proposed graph-based models and network-based snadel the studies show the similarity principle eell
describe the mechanism of drug-target interacfidrerefore, we develop an encoding scheme for ditget pair
representation by incorporating the similarity pipte.

For drugs, we can collect their chemical structdresn the KEGG LIGAND database, and compute theribal
structure similarity between drugs using SIMCOMBgram [19-20]. SIMCOMP provides a global similaritgore
based on the size of common substructures betweays dising a graph alignment algorithm. The sintitar
between drugsd and d’ is given bysdd, d)=|dN d/| dJ d. For target proteins, we obtained their primary
sequences from the KEGG GENES database, and comnzetguence similarities between proteins using a
normalized version of Smith—Waterman scores. Therescbetween two proteins t and t' is given by
sQtty=swtt)/(swit)tswt?)), where swtt) means the original Smith-Waterman score. Therefare
drug-target pair is represented by combining themdbal structure similarity and sequence similarityown by
Figure 3.

Vector representation
of drug

dl,d2,,dn ——m sc(d,d1),sc(d,d2),#++,se(d,dn) sc(d,d1)
sc(d,d2)
sc(d,dn)

ss(t,t1)
ss(t,t2)
tht2,tn  —W ss(t,t1),ss(t,t2),*+,ss(t,tn)

ss(t,tn)

Known drugs

Given a
drug-target
pair

target(t)

Known targets Vector representation
of target

Figure 3. The encoding scheme of represent drug-target pairsasnumerical vectors

Given a set of drug-target pafs, t.

K Tl

represented by the vecto{sdd,d) s¢d o), sed,d , and t is represented by the

vecto{sg 1, 1), s§;t §),--, sét,t} . Thus, we can represent the drug-target pairdofand t, by merging two
vectors.

}o,, covering a set of druggd}", and a set of target§t}?,, d is

The development of ensemble models

Due to the efficiency and good generalization cédpgapthe random forest is used as the classificaengine in the
paper, and we adopt the ensemble learning techna@uwenstruct the prediction model. Random for&¥)(is a
machine learning method developed by Leo Breimad Adele Cutler [21], which can be used for both
classification and regression. Typically, a randforest (RF) is made up of many decision trees, khice
constructed in the following way: the sampling teigiue is adopted to generate multiple samples ftmerdataset,
and trees are constructed on these samples byisgleplit features from a small random subseteattires. The
ensemble learning is a popular technique in macleiaming [22], which can incorporate various feasuor data
resources to achieve high-accuracy performanceefféstiveness has been proved by numerous apphisatn
bioinformatics [23-26].

The scheme of the ensemble model is summarizeallaws$.
1. Let A be the set of non-interaction drug-target paitd&e the set of interaction pairs. Random data sagpli
is implementeadh times on the A” to obtainn data subsetA” whose size is equal to the size of ,i=1,2;-- n;

2. Combined each”A and A" to generaten datasets with binary instance$=1,2;-- n . Totally, n

base-classifiers can be construabed datasets, and the ensemble model consists of lizasseclassifiers.

3. Given a new instance classifiers will maken decision values (binary value), and average vogivgn by
classifiers is used as the final decision.

Random forest and data bootstrapping are implerddntéVeka package [27], and default parametera@dopted.

Perfor mance evaluation metrics
There are several metrics ever used in the drygptanteraction prediction, i.e. sensitivity (SNpecificity (SP),
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accuracy (ACC), precision, recall, F-measure ({#§,drea under ROC curve (AUC) and the area und§APRR).

Recall= SNzﬂ
TP +| FN
_ N
TN +|FA
[TP+[TN
TP +[TN+| FR+| FN
TP
TP+ FA
_ 5 Precision Recall
Precision+ Recall

ACC=

Precision=

Where TP, TN, FP and FN are the number of true positives, the number o tragatives, the number of false
positives and the number of false negatives. Fatigwthe previous worksR, AUCand AUPR are used as the
primary evaluation metrics to evaluate and compaodels.

RESULTS

In this section, we focus on the drug-target irtBoms concerning four pharmaceutically useful ¢argrotein
classes: enzymes, ion channels, GPCRs and nuelsgpstors.

The statistical analysis on benchmark dataset
The similarity principle is widely adopted in thetwork-based methods and graph-based methodseads to the
satisfying performances. Here, we take the staesistinalysis to test the similarity principle.

For each protein family, targets of each drug aveddd into the interaction targets or non-intei@cttargets. For
each drug, the mean similarity score between iotiena targets (target interior similarity) as wel the mean
similarity score between interaction targets and-imberaction targets (target exterior similarigfe calculated
respectively. For example, we can obtain a vectad target interior similarity scores and a vecib445 target
exterior similarity scores for 445 drugs in the {ame dataset. Likewise, drugs can be into interacto

non-interaction for each drug, and their differenaa also be analyzed.

As shown in table 2, the interior targets are monchie similar than exterior targets; likewise, thierior drugs are
more similar than exterior drugs. By paired t-tés¢ difference of interior targets and exteriogéds is statistically
significant. The statistically significant differers also observed for the interior drugs and éstedrugs. The
results demonstrate the similarity principle

Table 2. The AUC scores of ensemble models using different data sampling times, evaluated by 10-fold CV

Mean of target Mean of target Mean of drug interior M .
N T P ean of drug exteriol
Dataset interior similarity exterior similarity p-value similarity scores similarity scores p-value
scores scores
Enzyme 0.5071 0.0180 3.8229e-083 0.4542 0.1431 775843
lon channel 0.4514 0.0268 9.6226e-048 0.4087 0.1925 7.4209e-056
GPCR 0.5400 0.1033 3.0245e-0%8 0.4783 0.2105 43068
Nuclear 0.5406 0.1245 0.5403 0.1995
receptor 4.7825e-009 2.9773e-009
Table 2. The AUC scores of ensemble models using different data sampling times, evaluated by 10-fold CV
Data 1 2 4 6 8 10 12 14 16 18 20
Enzyme 0.9540 0.965! 0.9700 0.97p0 0.9720 0.973M730.| 0.9730] 0.9730 0.9730 0.9730
lon Channel 0.9480 0.964p 0.9690 0.9690 0.9Y10 10.970.9710| 0.9710 0.9720 0.9720 0.9720
GPCR 0.8880] 0.9120 0.92110 0.9280 0.9250 0.9260 60.920.9270| 0.9280 0.929p 0.92%0
Nuclear Recepto]  0.811p0 0.8360 0.8200 0.8840 0.830(8360| 0.83600 0.8400 0.8430 0.8440 0.8430

The performance of ensemble models

In the related studies, the models are evaluateth®ienchmark datasets by 10-fold cross validgtl@CV). In
the 10-CV, the dataset are split into ten subséts @gqual size. Each time, one subset is keptestirtg, and others
are used to train prediction models, until eactsstiis once used.
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Here, the data bootstrapping is implementetimes to generate multiple datasets from inteoactiata, and the
ensemble model is constructed based on multiplasdts. The parametaermay influence the performances of
ensemble models. Therefore, we test different wabde ranging from 1 to 20 and results are shown in TablEhe
results demonstrate the parametehas the impacbn the performances of models, and the greaterevafu
parameter may lead to greater AUC score. In prevatassification-based models, the non-interaqieigs with the
same number of interaction pairs are randomly sathfom all non-interacting ones, and the balardatdset is
compiled. In order to test the usefulness of thdtipla data bootstrapping, we construct the noreertse

prediction models. In fact, the non-ensemble mdsla@ special case for the ensemble model (datalsagripme

n=1). According to the results in the table 2, thsemble models yield better performance than tmeemsemble
models.

However, much bootstrapping times can lead to e/} computational burden. Considering the medietwéen
the performance and the computational cost, weahsetlata bootstrapping timesas 10 in the following study.
Table 3 shows the performance of our ensemble mmpihelerms of different statistics.

Table 3. The performance of models evaluated by 10-fold CV (data sampling time n=10)

Data AUPR| AUC| TPR FPR| recall precisian F accuracy
Enzyme 0.699| 0.972 0.899 0.0%9 0.899 0.133 0.231 9410.
lon Channel 0.753] 0.969 0.920 0.093 0.920 0.262 07M{4 0.908
GPCR 0471 0.920 0.876 0.196 0.8[76 0.122 0.p14 70.90
Nuclear Recepto 0.353 0.838 0.825 0.2496 0.825 10.160.269 0.712

Obviously, based on the known interaction, our nidan produce the satisfying results for unknomtaractions.
Our model can produce the AUC scores of 0.973,1088W 0.926 for Enzyme, lon Channel, GPCR, resgelgti
which consist of hundreds of or thousands of intiipa data. Because nuclear receptor dataset aolydes 26
interactions, the prediction model gives out theQAktore of 0.836 on this dataset. For four profamilies, our
model can produce the recall scores greater tt&rsbBowing the potential of our computational metho

The performance of modelsfor new drugs and new tar gets

In the 10-CV, drugs and targets in the trainingasetcalled ‘known’, whereas those not existinghia training set
are called ‘new’. Compared with the drug-targetpai the training set, there are four classesaafspn the testing
set: (1) known drug and known target; (2) new daad known target; (3) known drug and new targetnéw drug
and new target. In fact, the results in the tablre8the average performances of our models odateaset, which
may include four classes of pairs in the testirtg se

With respect to the practical use, researchers lmeagore interested in the prediction of interactietween new
drugs and new targets. Therefore, we carry out nsoraputational experiments. Here, we adopt thréferdnt
ways of data splitting for 10-fold Cross Validatjaramely drug split, target split, and drug-targgft. Drug split is
to split drugs into 10 parts, and keep all targetisoth training set and testing set; target splib split targets into
10 parts, and keep all drugs in both training selttaesting set; drug-target split is to split bdthgs and targets into
10 parts, and drugs and targets in the testingreetot included in the training set.

Table 4, table 5 and table 6 respectively showlthv€V performance of models using three ways o datitting.
For Enzyme, lon Channel and GPCR, the models czd {fie AUC scores greater than 0.8. For NucleaeR®r,
the models produce the AUC scores greater tharMbie important, in the drug-target split, the poidn models
yield satisfying results for new drugs and newésg

Table 4. The 10-CV perfor mance of models based on drug split

Data AUC | TPR FPR| recall precisidn F accuracy

Enzyme 0.822] 0.380 0.040 0.380 0.088 0.143 0.955
lon Channel 0.774 0415 0.062 0.415 0.198 0.263 2.9

GPCR 0.863] 0.769 0.18F7 0.769 0.11 0.197 0.812

Nuclear Receptof  0.790 0.648 0.282 0.678 0.141  40]230.715

Table5. The 10-CV perfor mance of models based on target split

Data AUC | TPR FPR| recall precision F accuracy

Enzyme 0.923 0.75% 0.047 0.7%5 0.137 0.232 0.9p1
lon Channel 0.927 0.859 0.087 0.859 0.26D 0.8399 110.9

GPCR 0.879| 0.822 0.195 0.822 0.111 0.201 0.8p4

Nuclear Recepto]  0.725  0.622 0.285 0.622 0.130  50{210.709
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Table 6. The 10-CV performance of models based on drug-target split

Data AUC | TPR FPR| recall precisign F accurgcy
Enzyme 0.865| 0.556 0.044 0.55%6 0.112 0.186 0.952
lon Channel 0.846 0.629 0.0798 0.629 0.224 0.830 120.9
GPCR 0.865| 0.783 0.189p 0.783 0.11 0.197 0.810
Nuclear Receptof 0.760 0.693 0.287 0.653 0.134  20{220.709

Comparison with benchmark methods
Here, several state-of-the-art methods are adometthe benchmark methods for comparison, such asnién’s

bipartite graph learning method[7], Yaminish's bigta local method[8] and Cheng’s network-baseceiiahce
method[10].

Yaminish’s bipartite graph learning method[7] embmmmpounds and proteins on the interaction netviatdk a
unified space called ‘pharmacological space’, drehtbuild a model between the chemical/genomicespad the
pharmacological space. Yaminish’s bipartite loc&timod [8] represents the unknown drug-target ioteras as a
bipartite graph. The bipartite local model firsegicts target proteins of a given drug, and theadipts drugs
targeting a given protein. Then, two independeetijgtions are combined for prediction. Cheng’s mekabased
inference method [10] adopts the resource allooatigorithm to predict interactions in the druggetrinteraction
network. These methods were ever evaluated onaime denchmark datasets, and the performance scamese
obtained from the publications.

In order to compare different methods, we perforrh@drials of 10-fold cross-validation, and R s&raUC score
and AUPR scores are adopted. According to the teegultable 7, the AUC scores of our method areiaisly
better than the graph learning method, and aresdlts the bipartite local method and NBI methodadidition, as
shown in the table 8 and table 9, our method l¢ag®or performance than bipartite local method Bd method

in terms of AUPR and R. Although the bipartite locaethod and NBI method can produce high-accuracy
performance, they fail to predict the interactidmetween new drugs and new targets. In contrastp@tihod can
make prediction for such pairs, and may have therntial for practical application.

Table 7. The 10-CV performance of different method in terms of AUC

Data Bipartite learning methog bipartite local method  NBI methogd  Our method
Enzyme 0.904 0.97.0 0.975 0.973
lon Channel 0.851 0.968 0.976 0.971
GPCR 0.899 0.948 0.946 0.926
Nuclear Recepto 0.843 0.850 0.838 0.836]

Table 8. The 10-CV performance of different method in terms of AUPR

Here, we must emphasize the applicability of priéaiicmodels is as important as the accuracy. Coetpaiith the
state-of-the-art methods, our method can produeditih-accuracy performance and predict any DITs.

Data Bipartite learning methof bipartite local method NBI methogd  Our method
Enzyme N.A 0.832 N.A 0
lon Channel N.A 0.768 N.A 0.753
GPCR N.A 0.652 N.A 0.471
Nuclear Recepto N.A 0.581 N.A 0.353
Table 9. The 10-CV performance of different method in termsof R
Data Bipartite learning methog bipartite local method  NBI methog  Our methed
Enzyme 0.574 N.A 0.935 0.909
lon Channel 0.271 N.A 0.981 0.924
GPCR 0.234 N.A 0.948 0.882
Nuclear Recepto 0.148 N.A 0.851 0.844
CONCLUSION

Although most DTI prediction models can produce ligh-accuracy performance, they usually fail tedict the
interactions between new drugs and new targetsiefdre, we attempt to build the prediction modéist tpredict
any DTlIs. This paper investigates the correlatibdrags and targets that form interaction by udmgr classes of
drug—target interaction data involving enzymes, ébannels, G-protein-coupled receptors and nucaptors. In
order to build prediction models, we transform thrag-target interaction data into binary instanbgsexploiting

the global information of the networks, and themasle drug-target pairs into feature vectors by gusire drug
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chemical similarity and protein sequence similarithen, we adopt the random forest as the claasific engine,
and develop the ensemble models to make predicGompared with the state-of-the-art methods, outhote
produces high-accuracy performance for the bendhmatasets. More importantly, our method can predine
satisfying performance for the interactions betweemw drugs and new targets. In conclusion, our atktis
promising for the computational prediction of DTls.
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