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ABSTRACT 
 
Drug-target interaction (DTI) provides novel insights about the genomic drug discovery. The wet experiments of 
identifying DTIs are time-consuming and costly. Recently, the increase of available data provides the opportunity to 
the development of computational methods. Although many computational methods have been proposed (such as 
classification-based methods, graph-based methods and network-based methods), there is still room for 
improvements. On one hand, there are much more non-interaction drug-target pairs than interaction pairs, and the 
classification-based methods are undermined by the imbalanced data and heavy computational burden. On the other 
hand, the graph-based methods and the network-based methods are incapable of predicting the interactions between 
new drugs and new targets. In the paper, we investigate the correlation of drugs and targets that interact, based on 
four classes of drug–target interaction data involving enzymes, ion channels, G-protein-coupled receptors and 
nuclear receptors. By exploiting the global information from interaction data, we compile the drug-target 
interaction networks as the binary classification datasets with positive and negative drug-target pairs. Then, we 
develop a representation of drug-target pairs based on drug chemical similarity and target sequence similarity, and 
adopt the random forest as classification engine to build the prediction models. Compared with the state-of-the-art 
methods, our method produces satisfying performance on the benchmark datasets. In general, our method can 
predict the interactions between know drugs and targets as well as the interactions between new drugs and new 
targets. In conclusion, our method is a promising tool for the drug–target interaction prediction. 
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INTRODUCTION 
 

The identification of interactions between drugs and target (DTIs) proteins plays an important role in the drug 
discovery [1-3]. The high-throughput experiments that analyze the genome, transcriptome and proteome can help to 
understand the genomic spaces populated by common protein classes, and identify potentially useful compounds. 
However, the wet experiments are time-consuming and costly. The boom of bioinformatics promotes the 
establishment of drug databases, and the increase of data provides the opportunity for the development of 
computational methods, and the computational methods become an alternative. 
 
The earlier methods are based on the tradition computational techniques. Keiser et al. (2007) [4] predicted target 
protein families based on the known structures of a set of ligands, but may not perform well for target proteins with 
limited number of known ligands. Humberto et al. developed a multi-target QSAR classifier and built a web server 
for DTI prediction [5]. Li et al. proposed a docking-based method, and construct a web server named 'TarFisDock' 
for DTI identification [6]. However, those traditional methods could not be used when the 3D structures of target 
proteins are not available. 
 
In the last decade, with the rise of information technique, some intelligent algorithms are adopted to predict DTIs. 
Generally, these intelligent methods can be roughly grouped into three types, including the classification-based 
methods, graph-based methods and network-based methods. The classification-based methods are transforming the 
original problem into a binary classification problem and develop the machine learning-based prediction models. 
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Graph-based models take DTIs as a bipartite, and use the graph theory and supervised inference methods to predict 
DTIs. The network-based models adopt the complex network algorithm to predict the DTIs.  
 
In 2008, Yamanishi et al.[7] formulated the drug–target interaction inference as a supervised learning problem for a 
bipartite graph, and build prediction models by using nearest profile, weighted profile and bipartite graph learning 
respectively. More recently, the researchers come to realize that similar drug compounds are likely to interact with 
similar target proteins (we name it 'similarity principle' in the following context), thus graph-based models and 
network-based models are developed. Yamanishi et al. [8] (2009) uses bipartite local models to predict target 
proteins of a given drug, and to predict drugs targeting a given protein. Xia (2010) [9] adopts the semi-supervised 
method to predict drug-protein interaction from heterogeneous biological spaces. In 2011, Huang [10] considers the 
DTIs as the complex network, and adopts the network-based inference method to predict potential DTIs. Laarhoven 
(2011) [11] adopts the Gaussian interaction profile kernels to predict drug-target interaction. Chen (2012) [12] 
developed the drug-target interaction prediction by random walk on the heterogeneous network. In 2012, Yu [13] 
proposed a systematic binary classification approach that efficiently integrates the chemical, genomic, and 
pharmacological information for drug targeting and discovery on a large scale, by using two machine learning 
methods-Random Forest (RF) and Support Vector Machine (SVM). Chen (2013) [14] proposed A Semi-Supervised 
Method for Drug-Target Interaction Prediction with Consistency in Networks. 
 
In general, the classification-based models may benefit from the sophisticated binary classification algorithms. 
However, there are much more non-interaction drug-target pairs than interaction pairs. In order to deal with the 
imbalance, the known interacting pairs are taken as positive instances, and negative instances of the same number 
are extracted from non-binding drug-target pairs. This strategy may lead to the information loss, and influence the 
performance of prediction models. In contrast, due to the use of similarity principle, the graph-based methods and 
network-based methods can yield better performance than the classification-based models. However, they cannot 
effectively predict interactions between new drugs (drugs not existing in the training set) and new targets (targets not 
existing in the training set). Therefore, the applicability of the graph-based methods and network-based methods are 
seriously undermined. 
 
In order to build high-accuracy and useful prediction models, we should consider some points concerning the 
drug-target interaction: (1) the similarity principle incorporates the mechanism of drug-target interaction, and it is 
very important for building prediction models. (2) The applicability of prediction models is as important as the 
accuracy. The powerful method should make prediction for any DTIs, especially the interactions between new drugs 
and new targets. In order to address above issues, we take following strategies. Firstly, we use the known DTIs as 
the positive instances, and adopt the data bootstrapping technique to extract negative instances from non-interaction 
pairs. Then, multiple balanced datasets with binary instances are compiled, which may reduce the information loss 
in data processing. Secondly, we develop a novel representation of drug-target pairs by considering drug chemical 
structure similarity and protein sequence similarity. Thirdly, we adopt the random forest as the classification engine, 
and develop the base classifiers based on the multiple datasets. Thus, the ensemble model is constructed by 
combining based classifiers. Compared with the state-of-the-art methods, our method produces satisfying 
performance on the benchmark datasets. In general, our method can predict the interactions between know drugs and 
targets as well as the interactions between new drugs and new targets. In conclusion, our method is a promising tool 
for the drug–target interaction prediction. 
 

EXPERIMENTAL SECTION 
 
Datasets 
There are several databases related with the drug-target interaction, such as the KEGG BRITE [15], BRENDA [16], 
SuperTarget [17] and DrugBank [18]. These databases contain containing experimentally validated DTIs, and help 
to establish the foundation of computational works. KEGG BRITE is a component of KEGG (Kyoto Encyclopedia 
of Genes and Genomes) database, which can provide the information about the protein-protein interaction. 
BRENDA (http://www.brenda-enzymes.org/) is the main collection of enzyme functional data. SuperTarget 
(http://bioinf-apache.charite.de/supertarget_v2/) is a database collecting information about drug-target relations, 
which mainly consists of three different types of entities: drugs, proteins, and side effects. Besides, information 
about pathways and ontologies can be obtained. DrugBank database (http://www.drugbank.ca/) is an important 
resource that combines detailed drugs with comprehensive drug target. The database contains 1455 FDA-approved 
small molecule drugs, 131 FDA-approved biotech drugs and etc. 
 
Yamanishi collects drug-target interaction data from above databases, which are closely relevant with the novel drug 
development. The data covers four important target protein families (enzymes, ion channels, GPCRs and nuclear 
receptors), and the interaction data can be formulated as four datasets according to protein families. The details of all 
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datasets are shown in table 1. Since the datasets have been widely used in the recent studies, they are adopted as the 
benchmark datasets to evaluate our models and make comparison with benchmark methods. 
 

Table 1. The details of benchmark datasets 
 

Dataset #Drug #Target #Interaction Non-Interaction versus Interaction 
Enzyme 445 664 2926 99.9843 

Ion channel 210 204 1476 28.0244 
GPCR 223 95 635 32.3622 

Nuclear receptor 54 26 90 14.6000 

 
Basic idea of our method 
In this paper, we attempt to predict drug-target interactions through comparative study of binary classification-based 
models, graph-based models and network-based models. Firstly, we generate the instances representing the 
interacting drug-target pairs and non-interacting pairs from interaction data, and transform the original problem into 
the binary classification. Then, we develop an encoding scheme of presenting drug-target pairs as numeric vectors, 
which incorporates the idea that the similar drugs are likely to interact with similar targets. In order to build the 
high-accuracy prediction models, we adopt the random forest as the classification engine, and develop the ensemble 
models. The basic idea is shown in FIg.1. 
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Figure 1. The flowchart of our method 
 
The details of compiling binary instances from interaction data, the encoding scheme and ensemble learning strategy 
are presented in the following context. 
 
Generating instances from interaction data 
Here, we formulate the original problem as the binary classification, by generating binary instances from interaction 
data. For N drugs and M targets, there are N*M drug-target pairs. Clearly, the known interaction pairs take a small 
proportion of all pairs, and there are a huge number of non-interaction pairs. For example, the enzyme data includes 
292554 non-interaction pairs. The imbalanced and large-scale data lead to the heavy computational burden. In the 
related studies, non-interaction pairs are randomly selected until they reached the same number as the positive pairs, 
thus the balanced dataset are generated. However, this strategy may lead to the information loss and have the 
negative impact on the performance of prediction models.  
 
Here, we adopt data bootstrapping to compile binary instances. Given the interaction data, the interaction drug-target 
pairs are used as the positive instances, and data sampling is implemented n times on the non-interaction pairs to 
obtain n subsets with the same size as interaction pairs. By combining interaction pairs and n subsets of 
non-interaction pairs respectively, we can obtain n balanced datasets, which are further used for modeling. The 
flowchart of generating instances from interaction data is shown by table 2. The strategy can make use of the 
interaction dataset and avoid the data bias. 
 

 
 

Figure 2. The flowchart of generating instances from interaction data 
 
Vector representation of drug-target pairs 
Before building machine learning-based prediction models, the drug-target pairs should be represented as numerical 
vectors. To our knowledge, there are a large number of literatures in bioinformatics devoted to the representation of 
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protein sequences or peptides by various descriptors or features. These descriptors are usually related with the 
physicochemical and structural properties of the molecules, and can be used to infer models to predict, e.g. the 
structural or functional class of a protein.  
 
The similarity principle (the similar drugs are likely to interact with similar targets) is widely used in the recently 
proposed graph-based models and network-based models, and the studies show the similarity principle can well 
describe the mechanism of drug-target interaction. Therefore, we develop an encoding scheme for drug-target pair 
representation by incorporating the similarity principle. 
 
For drugs, we can collect their chemical structures from the KEGG LIGAND database, and compute the chemical 
structure similarity between drugs using SIMCOMP program [19-20]. SIMCOMP provides a global similarity score 
based on the size of common substructures between drugs using a graph alignment algorithm. The similarity 
between drugs d and d’ is given by ( , ') ' / 'sc d d d d d d= I U . For target proteins, we obtained their primary 

sequences from the KEGG GENES database, and computed sequence similarities between proteins using a 
normalized version of Smith–Waterman scores. The score between two proteins t and t’ is given by 

( , ') ( , ') / ( ( , ) ( ', '))ss t t sw t t sw t t sw t t= , where ( , )sw t t  means the original Smith-Waterman score. Therefore, a 

drug-target pair is represented by combining the chemical structure similarity and sequence similarity, shown by 
Figure 3. 

 
Figure 3. The encoding scheme of represent drug-target pairs as numerical vectors 
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vectors. 
 
The development of ensemble models 
Due to the efficiency and good generalization capability, the random forest is used as the classification engine in the 
paper, and we adopt the ensemble learning technique to construct the prediction model. Random forest (RF) is a 
machine learning method developed by Leo Breiman and Adele Cutler [21], which can be used for both 
classification and regression. Typically, a random forest (RF) is made up of many decision trees, which are 
constructed in the following way: the sampling technique is adopted to generate multiple samples from the dataset, 
and trees are constructed on these samples by selecting split features from a small random subset of features. The 
ensemble learning is a popular technique in machine learning [22], which can incorporate various features or data 
resources to achieve high-accuracy performance. Its effectiveness has been proved by numerous applications in 
bioinformatics [23-26]. 
 
The scheme of the ensemble model is summarized as follows.  
1. Let A−  be the set of non-interaction drug-target pairs;A+ be the set of interaction pairs. Random data sampling 
is implemented n times on the A−  to obtain n data subset iA−  whose size is equal to the size of A+ , 1,2, ,i n= L ; 

2. Combined each iA−  and A+  to generate n datasets with binary instances, 1,2, ,i n= L . Totally, n 

base-classifiers can be constructed on n datasets, and the ensemble model consists of these base-classifiers. 
3. Given a new instance, n classifiers will make n decision values (binary value), and average voting given by 
classifiers is used as the final decision.  
Random forest and data bootstrapping are implemented by Weka package [27], and default parameters are adopted. 
 
Performance evaluation metrics 
There are several metrics ever used in the drug-target interaction prediction, i.e. sensitivity (SN), specificity (SP), 
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accuracy (ACC), precision, recall, F-measure (F), the area under ROC curve (AUC) and the area under PR (AUPR). 
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Where TP ,TN , FP and FN are the number of true positives, the number of true negatives, the number of false 
positives and the number of false negatives. Following the previous works, R , AUCand AUPR are used as the 
primary evaluation metrics to evaluate and compare models. 
 

RESULTS 
 
In this section, we focus on the drug-target interactions concerning four pharmaceutically useful target protein 
classes: enzymes, ion channels, GPCRs and nuclear receptors.  
 
The statistical analysis on benchmark dataset 
The similarity principle is widely adopted in the network-based methods and graph-based methods, and leads to the 
satisfying performances. Here, we take the statistical analysis to test the similarity principle.  
 
For each protein family, targets of each drug are divided into the interaction targets or non-interaction targets. For 
each drug, the mean similarity score between interaction targets (target interior similarity) as well as the mean 
similarity score between interaction targets and non-interaction targets (target exterior similarity) are calculated 
respectively. For example, we can obtain a vector of 445 target interior similarity scores and a vector of 445 target 
exterior similarity scores for 445 drugs in the Enzyme dataset. Likewise, drugs can be into interaction or 
non-interaction for each drug, and their difference can also be analyzed.  
 
As shown in table 2, the interior targets are much more similar than exterior targets; likewise, the interior drugs are 
more similar than exterior drugs. By paired t-test, the difference of interior targets and exterior targets is statistically 
significant. The statistically significant different is also observed for the interior drugs and exterior drugs. The 
results demonstrate the similarity principle  
 

Table 2. The AUC scores of ensemble models using different data sampling times, evaluated by 10-fold CV 
 

Dataset 
Mean of target 

interior similarity 
scores 

Mean of target 
exterior similarity 

scores 
p-value 

Mean of drug interior 
similarity scores 

Mean of drug exterior 
similarity scores 

p-value 

Enzyme 0.5071 0.0180 3.8229e-083 0.4542 0.1431 7.5877e-143 
Ion channel 0.4514 0.0268 9.6226e-048 0.4087 0.1925 7.4209e-056 

GPCR 0.5400 0.1033 3.0245e-058 0.4783 0.2105 4.8463e-018 
Nuclear 
receptor 

0.5406 0.1245 
4.7825e-009 

0.5403 0.1995 
2.9773e-009 

 
Table 2. The AUC scores of ensemble models using different data sampling times, evaluated by 10-fold CV 

 
Data 1 2 4 6 8 10 12 14 16 18 20 

Enzyme 0.9540 0.9650 0.9700 0.9720 0.9720 0.9730 0.9730 0.9730 0.9730 0.9730 0.9730 
Ion Channel 0.9480 0.9640 0.9690 0.9690 0.9710 0.9710 0.9710 0.9710 0.9720 0.9720 0.9720 

GPCR 0.8880 0.9120 0.9210 0.9230 0.9250 0.9260 0.9260 0.9270 0.9280 0.9290 0.9290 
Nuclear Receptor 0.8110 0.8360 0.8290 0.8340 0.8370 0.8360 0.8360 0.8400 0.8430 0.8440 0.8430 

 
The performance of ensemble models 
In the related studies, the models are evaluated on the benchmark datasets by 10-fold cross validation (10-CV). In 
the 10-CV, the dataset are split into ten subsets with equal size. Each time, one subset is kept for testing, and others 
are used to train prediction models, until each subset is once used. 
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Here, the data bootstrapping is implemented n times to generate multiple datasets from interaction data, and the 
ensemble model is constructed based on multiple datasets. The parameter n may influence the performances of 
ensemble models. Therefore, we test different values of n ranging from 1 to 20 and results are shown in Table 2. The 
results demonstrate the parameter n has the impact on the performances of models, and the greater value of 
parameter may lead to greater AUC score. In previous classification-based models, the non-interacting pairs with the 
same number of interaction pairs are randomly sampled from all non-interacting ones, and the balanced dataset is 
compiled. In order to test the usefulness of the multiple data bootstrapping, we construct the non-ensemble 
prediction models. In fact, the non-ensemble model is a special case for the ensemble model (data sampling time 
n=1). According to the results in the table 2, the ensemble models yield better performance than the non-ensemble 
models.  
 
However, much bootstrapping times can lead to the heavy computational burden. Considering the medium between 
the performance and the computational cost, we set the data bootstrapping times n as 10 in the following study. 
Table 3 shows the performance of our ensemble models, in terms of different statistics.  
 

Table 3. The performance of models evaluated by 10-fold CV (data sampling time n=10) 
 

Data AUPR AUC TPR FPR recall precision F accuracy 
Enzyme 0.699 0.972 0.899 0.059 0.899 0.133 0.231 0.941 

Ion Channel 0.753 0.969 0.920 0.093 0.920 0.262 0.407 0.908 
GPCR 0.471 0.920 0.876 0.196 0.876 0.122 0.214 0.807 

Nuclear Receptor 0.353 0.838 0.825 0.296 0.825 0.161 0.269 0.712 

 
Obviously, based on the known interaction, our models can produce the satisfying results for unknown interactions. 
Our model can produce the AUC scores of 0.973, 0.971 and 0.926 for Enzyme, Ion Channel, GPCR, respectively, 
which consist of hundreds of or thousands of interaction data. Because nuclear receptor dataset only includes 26 
interactions, the prediction model gives out the AUC score of 0.836 on this dataset. For four protein families, our 
model can produce the recall scores greater than 0.8, showing the potential of our computational methods. 
 
The performance of models for new drugs and new targets 
In the 10-CV, drugs and targets in the training set are called ‘known’, whereas those not existing in the training set 
are called ‘new’. Compared with the drug-target pairs in the training set, there are four classes of pairs in the testing 
set: (1) known drug and known target; (2) new drug and known target; (3) known drug and new target; (4) new drug 
and new target. In fact, the results in the table 3 are the average performances of our models on the dataset, which 
may include four classes of pairs in the testing set. 
 
With respect to the practical use, researchers may be more interested in the prediction of interaction between new 
drugs and new targets. Therefore, we carry out more computational experiments. Here, we adopt three different 
ways of data splitting for 10-fold Cross Validation, namely drug split, target split, and drug-target split. Drug split is 
to split drugs into 10 parts, and keep all targets in both training set and testing set; target split is to split targets into 
10 parts, and keep all drugs in both training set and testing set; drug-target split is to split both drugs and targets into 
10 parts, and drugs and targets in the testing set are not included in the training set. 
 
Table 4, table 5 and table 6 respectively show the 10-CV performance of models using three ways of data splitting. 
For Enzyme, Ion Channel and GPCR, the models can yield the AUC scores greater than 0.8. For Nuclear Receptor, 
the models produce the AUC scores greater than 0.7. More important, in the drug-target split, the prediction models 
yield satisfying results for new drugs and new targets. 
 

Table 4. The 10-CV performance of models based on drug split 
 

Data AUC TPR FPR recall precision F accuracy 
Enzyme 0.822 0.380 0.040 0.380 0.088 0.143 0.955 

Ion Channel 0.772 0.415 0.062 0.415 0.193 0.263 0.920 
GPCR 0.863 0.769 0.187 0.769 0.113 0.197 0.812 

Nuclear Receptor 0.790 0.678 0.282 0.678 0.141 0.234 0.715 
 

Table 5. The 10-CV performance of models based on target split 
 

Data AUC TPR FPR recall precision F accuracy 
Enzyme 0.923 0.755 0.047 0.755 0.137 0.232 0.951 

Ion Channel 0.927 0.859 0.087 0.859 0.260 0.399 0.911 
GPCR 0.879 0.822 0.196 0.822 0.115 0.201 0.804 

Nuclear Receptor 0.725 0.622 0.285 0.622 0.130 0.215 0.709 
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Table 6. The 10-CV performance of models based on drug-target split 
 

Data AUC TPR FPR recall precision F accuracy 
Enzyme 0.865 0.556 0.044 0.556 0.112 0.186 0.952 

Ion Channel 0.846 0.629 0.078 0.629 0.224 0.330 0.912 
GPCR 0.865 0.783 0.189 0.783 0.113 0.197 0.810 

Nuclear Receptor 0.760 0.653 0.287 0.653 0.134 0.222 0.709 

 
Comparison with benchmark methods 
Here, several state-of-the-art methods are adopted as the benchmark methods for comparison, such as Yaminish’s 
bipartite graph learning method[7], Yaminish’s bipartite local method[8] and Cheng’s network-based inference 
method[10].  
 
Yaminish’s bipartite graph learning method[7] embed compounds and proteins on the interaction network into a 
unified space called ‘pharmacological space’, and then build a model between the chemical/genomic space and the 
pharmacological space. Yaminish’s bipartite local method [8] represents the unknown drug-target interactions as a 
bipartite graph. The bipartite local model first predicts target proteins of a given drug, and then predicts drugs 
targeting a given protein. Then, two independent predictions are combined for prediction. Cheng’s network-based 
inference method [10] adopts the resource allocation algorithm to predict interactions in the drug-target interaction 
network. These methods were ever evaluated on the same benchmark datasets, and the performance scores can be 
obtained from the publications.   
 
In order to compare different methods, we performed 10 trials of 10-fold cross-validation, and R scores, AUC score 
and AUPR scores are adopted. According to the results in table 7, the AUC scores of our method are obviously 
better than the graph learning method, and are closed to the bipartite local method and NBI method. In addition, as 
shown in the table 8 and table 9, our method leads to poor performance than bipartite local method and NBI method 
in terms of AUPR and R. Although the bipartite local method and NBI method can produce high-accuracy 
performance, they fail to predict the interactions between new drugs and new targets. In contrast, our method can 
make prediction for such pairs, and may have the potential for practical application.  
 

Table 7. The 10-CV performance of different method in terms of AUC 
 

 Data Bipartite learning method  bipartite local method NBI method Our method 
Enzyme 0.904 0.97.0 0.975 0.973 

Ion Channel 0.851 0.968 0.976 0.971 
GPCR 0.899 0.948 0.946 0.926 

Nuclear Receptor 0.843 0.850 0.838 0.836 

  
Here, we must emphasize the applicability of prediction models is as important as the accuracy. Compared with the 
state-of-the-art methods, our method can produce the high-accuracy performance and predict any DITs. 
 

Table 8. The 10-CV performance of different method in terms of AUPR 
 

 Data Bipartite learning method  bipartite local method NBI method Our method 
Enzyme N.A 0.832 N.A 0 

Ion Channel N.A 0.768 N.A 0.753 
GPCR N.A 0.652 N.A 0.471 

Nuclear Receptor N.A 0.581 N.A 0.353 
 

Table 9. The 10-CV performance of different method in terms of R  
 

 Data Bipartite learning method  bipartite local method NBI method Our method 
Enzyme 0.574 N.A 0.935 0.909 

Ion Channel 0.271 N.A 0.981 0.924 
GPCR 0.234 N.A 0.948 0.882 

Nuclear Receptor 0.148 N.A 0.851 0.844 

 
CONCLUSION 

 
Although most DTI prediction models can produce the high-accuracy performance, they usually fail to predict the 
interactions between new drugs and new targets. Therefore, we attempt to build the prediction models that predict 
any DTIs. This paper investigates the correlation of drugs and targets that form interaction by using four classes of 
drug–target interaction data involving enzymes, ion channels, G-protein-coupled receptors and nuclear receptors. In 
order to build prediction models, we transform the drug-target interaction data into binary instances by exploiting 
the global information of the networks, and then encode drug-target pairs into feature vectors by using the drug 
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chemical similarity and protein sequence similarity. Then, we adopt the random forest as the classification engine, 
and develop the ensemble models to make prediction. Compared with the state-of-the-art methods, our method 
produces high-accuracy performance for the benchmark datasets. More importantly, our method can produce the 
satisfying performance for the interactions between new drugs and new targets. In conclusion, our method is 
promising for the computational prediction of DTIs. 
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