Available online www.jocpr.com

Journal of Chemical and Pharmaceutical Research, 2015, 7(7):1188-1193

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Spectroscopic properties of lanthanide and actinide triflates: Insight TDDFT

Meriem Lemmouchi and Nadia Ouddai

Laboratoire Chimie des matériaux et des vivants: Activité, Réactivité, Université- Hadj Lakhdar Batna- Algeria

ABSTRACT

Time-Dependent Density Functional Theory (TD-DFT) has become the most widely-used theoretical approach to simulate the optical properties. The TDDFT calculations of the lowest excited states of the lanthanide and actinide triflates $M(OTf)_n$; where (M=Ce, Th, Np, Pu, Am, Cm and Bk); (n=3 and 4), provide an accurate description of their UV-visible spectra. The UV region is characterized by the most pointed and reduce peak of the $Th(OTf)_4$ compound that assigned to ligand metal charge transfer (LMCT) transition. The absorption specter of $Np(OTf)_3$ and $Pu(OTf)_3$ is mixed of LMCT, MLCT and intra charge transfer (ICT) transitions. The HOMO-LUMO transition of $Pu(OTf)_3$ are strongly bathochromically shifted compared with those of $Np(OTf)_3$ and $Th(OTf)_4$. These three complexes are capable to give a luminescence in the emission specter. The $M(OTf)_n$ where (M=Ce, Pu, Am, Cm and Bk); (n=3 and 4) are dominated in visible, ultra violet and infra read region by LMCT transition of the $Ce(OTf)_4$ and ICT of $Pu(OTf)_4$, $Am(OTf)_3$, $Cm(OTf)_3$ and $Bk(OTf)_3$.

Key words: TDDFT, Triflate, Lanthanide, Actinide, LMCT, MLCT, ICT

INTRODUCTION

The extension of Density functional theory (DFT) to the time dependent domain, namely time-dependent density functional theory (TDDFT) has been originally proposed by Runge and Gross 30 years ago.[1] Recently, the research of electroluminescent materials has been the subject of interest, and some researchers have extended their attention to heavy metal-coordinate complexes, even rare-earth complexes [2, 3]. Indeed, for such systems, the importance of excited-state-spin-contamination has been recently analyzed [4]. The TDDFT approach has been demonstrated to be reliable for calculating spectra properties of many transition metal complexes [5]. In this section we will focus on the spectroscopic properties of the lanthanide and actinide triflates complexes M(OTf)_n; where (M=Ce, Th, Np, Pu, Am, Cm and Bk); (n=3 and 4), those used as Lewis acid catalysts in a variety of organic reactions, as well as precursors in inorganic and organometallic synthesis and they are also used in the nuclear industry [6].

EXPERIMENTAL SECTION

In this paper we carry out a quantum calculation on the lanthanide and actinide triflates $M(OTf)_n$; where (M= Ce, Th, Np, Pu, Am, Cm and Bk); (n=3 and 4); that coordinate with the OTf ligand as bidentate. The geometrical structures of the singlet ground state and the lowest lying triplet excited state are optimized by the DFT [7, 8] method with time-dependent functional theory approach TDDFT [9-12]/SAOP[13] calculations. All calculations are performed using the program ADF (Amsterdam Density Functional) developed by Baerends et al.[14] and the geometrical structures are fully optimized in gas state without any symmetry constraints.

RESULTS AND DISCUSSION

For all the triflate complexes M(OTf)_n; where (M= Ce, Th, Np, Pu, Am, Cm and Bk); (n=3 and 4), we have distinguished three categories appropriate to their range of wavelength.

3.1. The ultraviolet (UV) region:

This region is dominated by three triflate complexes such as the thorium, neptunium and plutonium triflates, with the general formula Th(OTf)₄, Np(OTf)₃ and Pu(OTf)₃ respectively.

The excitation energies E(ev), the wavelength λ (nm) and the greatest values of the oscillator strengths f are summarized in Tables 1. The tables also include the composition (%) of the excited states and the character of the transitions.

Table 1: The absorptions of the Th(OTf	4, Np(OTf)3 and Pu(OTf)3 compounds	according to TDDFT Calculations
--	------------------------------------	---------------------------------

Complex	λ (nm)	E(ev)	f	%	Transition	Character
Pu(OTf) ₃	920.4958	1.3471	0.5376 e10 ⁻⁵	83	$HOMO \rightarrow LUMO$	ICT
	332.1369	3.7334	0.3064 e10 ⁻²	98	$HOMO-4 \rightarrow LUMO$	LMCT
	279.1786	4.4416	0.1228 e10 ⁻¹	70	$HOMO-2 \rightarrow LUMO+3$	ICT
	273.3083	4.5370	0.6299 e10 ⁻²	90	HOMO-10→ LUMO	LMCT
	271.210	4.5721	0.1225 e10 ⁻²	85	$HOMO-3 \rightarrow LUMO+12$	MLCT
	266.0373	4.6610	0.2986 e10 ⁻²	95	$HOMO-10 \rightarrow LUMO+1$	LMCT
Th(OTf) ₄	252.8187	4.9047	0.3422 e10 ⁻⁶	100	HOMO → LUMO	LMCT
	231.416	5.3583	0.1099 e10 ⁻¹	78	HOMO- $4 \rightarrow LUMO+1$	LMCT
	228.811	5.4193	0.1726 e10 ⁻¹	67	$HOMO \rightarrow LUMO+5$	LMCT
	226.7532	5.4685	0.3799 e10 ⁻²	95	$HOMO-6 \rightarrow LUMO+3$	LMCT
	214.1438	5.7905	0.5787 e10 ⁻²	97	HOMO- $3 \rightarrow LUMO+5$	LMCT
	211.7739	5.8553	0.2093 e10 ⁻²	98	HOMO- $6 \rightarrow LUMO+6$	LMCT
Np(OTf) ₃	624.811	1.9846	0.4607 e10 ⁻⁶	4	HOMO → LUMO	ICT
	332.4664	3.7297	0.1779 e10 ⁻¹	61	$HOMO-2 \rightarrow LUMO+11$	ICT
	330.1911	3.7554	0.1675 e10 ⁻¹	68	HOMO- $2 \rightarrow LUMO+12$	MLCT
	265.0648	4.6781	0.1099 e10 ⁻¹	67	HOMO → LUMO+11	ICT
	246.766	5.0250	0.8501 e10 ⁻²	99	HOMO- 3 →LUMO+1	LMCT
	237.789	5.2145	0.3903 e10 ⁻²	31	HOMO- $5 \rightarrow LUMO$	LMCT

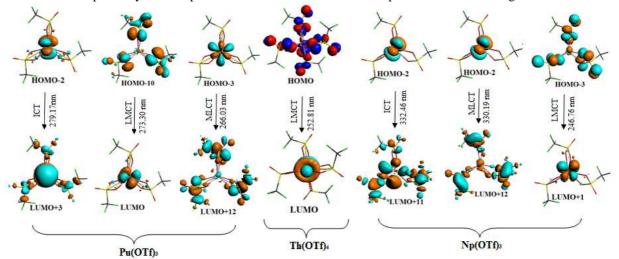



Figure 1: Theoretical UV absorption spectra of Np(OTf)₃, Pu(OTf)₃ and Th(OTf)₄ complexes

The absorption spectra reported in Figure 1 are dominated in the UV regions by absorption features which are given in Table 1. The specter of $Th(OTf)_4$ is reduced comparing with those of $Np(OTf)_3$ and $Pu(OTf)_3$ (see Figure 1), and it has the most pointed peak that assigned to LMTC transition (ligand to metal charge transfer). A blend of transition character is observed in the case of $Np(OTf)_3$ and $Pu(OTf)_3$: MLCT, ICT and LMCT [15-18].

The main difference in the absorption spectra of these three compounds is that HOMO-LUMO transition of Pu(OTf)₃ are strongly bathochromically shifted compared with those of Np(OTf)₃ and Th(OTf)₄. These three complexes are capable to give a luminescence in the emission (see Table 1).

The frontier orbitals relevant to discussion are available as supporting information. In both of the $Pu(OTf)_3$ and the $Np(OTf)_3$ complexes, the HOMO's and LUMO's are nearly completely localized between the metal and the ligand OTf, while in the case of the $Th(OTf)_4$ complex, the HOMO's and LUMO's are localized on the OTf ligand and the thorium metal respectively. The important transitions of these three complexes are shown in Figure 2.

 $Figure 2: The \ excitation \ transitions \ for \ the \ Pu(OTf)_3, Th(OTf)_4 \ and \ Np(OTf)_3 \ calculated \ by \ TD-DFT \ in \ gas \ phase$

3.2. The visible region:

In the visible domain, there are two dominated complexes the cerium triflate $Ce(OTf)_4$ and the plutonium triflate $Pu(OTf)_4$. The electronic absorption spectra of these complexes are shown in Table 2.

For the $Pu(OTf)_4$, a relatively broad band centered in all complexes at 615 nm, 517 nm, 480 nm, 452 nm and 437 nm. The visible region of $Ce(OTf)_4$ is characterized by a rather intense band between 493 nm and 424 nm (see Figure 4).

On the basis of the calculated excitation energies and oscillator strengths, the $Ce(OTf)_4$ complex is the best candidate with a quite intense feature peaking comparing to the $Pu(OTf)_4$ at about 452 nm (see Table 2 and Figure 4), this feature has a clear LMCT character (see Figure 3).

Complex	λ (nm)	E(ev)	f	%	Transition	Character
Ce(OTf) ₄	493	2.5144	0.2236 e10 ⁻⁴	53	$HOMO \rightarrow LUMO$	LMCT
	461	2.6889	0.1723 e10 ⁻²	35	HOMO- $1 \rightarrow LUMO+3$	LMCT
	459	2.7003	0.3686 e10 ⁻²	37	HOMO- $5 \rightarrow LUMO$	LMCT
	437	2.8374	0.1615 e10 ⁻¹	54	HOMO- $1 \rightarrow LUMO+6$	LMCT
	426	2.9116	0.1959 e10 ⁻¹	46	HOMO- 4→ LUMO+6	LMCT
	424	2.9236	0.1454 e10 ⁻¹	58	$HOMO-5 \rightarrow LUMO+6$	LMCT
	872	1.4220	0.4570 e10 ⁻⁴	52	$HOMO \rightarrow LUMO$	ICT
Pu(OTf) ₄	615	2.0163	0.2376 e10 ⁻²	49	$HOMO-2 \rightarrow LUMO+1$	ICT
	517	2.3995	0.2392 e10 ⁻²	63	$HOMO-3 \rightarrow LUMO+1$	ICT
	480	2.5849	0.4019 e10 ⁻²	52	HOMO-8→ LUMO+1	ICT
	452	2.7432	0.1072 e10 ⁻¹	57	HOMO-7→ LUMO+2	ICT
	437	2.8374	0.1105 e10 ⁻¹	20	$HOMO-3 \rightarrow LUMO+3$	ICT

Table 2: The absorptions of the Ce(OTf)₄ and Pu(OTf)₄ compounds according to TDDFT Calculations

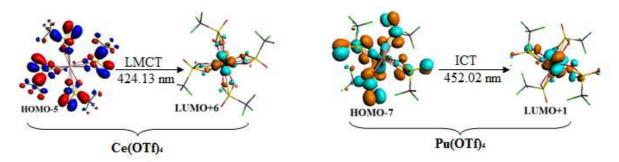
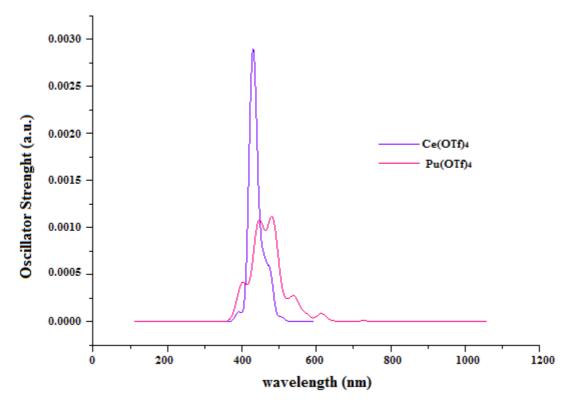



Figure 3: The excitation transitions for the $Pu(OTf)_4$ and $Ce(OTf)_4$ calculated by TD-DFT in gas phase

 $Figure 4: Theoretical\ UV\ absorption\ spectra\ of\ Np(OTf)_3, Pu(OTf)_3\ and\ Th(OTf)_4\ complexes$

Table 3: The absorptions of the Am(OTf)₃, Bk(OTf)₃ and Cm(OTf)₄ complexes according to TDDFT Calculations

Complex	λ (nm)	E (ev)	f	%	Transition	Character
Am(OTf) ₃	1056	1.1739	0.5175 e10 ⁻³	46	$HOMO \rightarrow LUMO$	ICT
	483	2.5682	0.6641e10 ⁻²	68	HOMO-5 \rightarrow LUMO	ICT
	423	2.9343	0.2131 e10 ⁻²	39	HOMO-10 →LUMO	ICT
	377	3.2894	0.1169 e10 ⁻²	83	HOMO-11 →LUMO	ICT
	302	4.1065	0.9679 e10 ⁻²	86	$HOMO-12 \rightarrow LUMO+1$	ICT
	278	4.4676	0.1639 e10 ⁻²	92	$HOMO-20 \rightarrow LUMO$	ICT
•	824	1.5055	0.3674 e10 ⁻²	18	$HOMO \rightarrow LUMO$	ICT
Cm(OTf) ₃	518	2.3919	0.1424 e10 ⁻¹	39	$HOMO-5 \rightarrow HOMO-4$	ICT
	496	2.4987	0.1002 e10 ⁻¹	26	$HOMO-9 \rightarrow LUMO$	ICT
CIII(O11)3	396	3.1334	0.1678 e10 ⁻¹	69	HOMO- 16 →LUMO	ICT
	279	4.4438	0.9150 e10 ⁻²	99	$HOMO-5 \rightarrow LUMO+1$	ICT
	232	5.3492	0.3294 e10 ⁻²	62	$HOMO-6 \rightarrow HOMO$	ICT
	678	1.8286	0.1341 e10 ⁻²	50	$HOMO \rightarrow LUMO$	ICT
	624	1.9874	0.1341 e10 ⁻²	57	$HOMO-1 \rightarrow LUMO+4$	ICT
Bk(OTf) ₃	581	2.1355	0.1503 e10 ⁻¹	31	$HOMO-4 \rightarrow LUMO+4$	ICT
BK(O11) ₃	421	2.9452	0.1125 e10 ⁻¹	80	HOMO-12 →LUMO+4	ICT
	314	3.9458	0.6701 e10 ⁻²	38	HOMO-2 →LUMO+2	ICT
	273	4.5349	0.2530 e10 ⁻²	74	HOMO-9 →LUMO+1	ICT

3.3. The UV-Visible- IR region

The absorption spectra reported in Figure 5 are dominated in the UV-Visible- IR region by absorption features which are given in Table 3. The main difference in the absorption spectra of the three compounds Am(OTf)₃, Cm(OTf)₃ and Bk(OTf)₃ is that all ICT transitions and they are strongly bathochromically shifted compared with those studied previously.



Figure5: Theoretical UV absorption spectra of Am(OTf)₃, Bk(OTf)₃ and Cm(OTf)₄ complexes

CONCLUSION

In this paper, we have applied the TDDFT methods to investigate the absorptions and luminescence properties of the lanthanide and actinide triflates complexes $M(OTf)_n$; where (M=Ce,Th,Np,Pu,Am,Cm and Bk); (n=3 and 4). The calculated results reveal that the $Th(OTf)_4$, $Np(OTf)_3$ and $Pu(OTf)_3$ complexes are dominated in UV region, with small values of the oscillator strengths f in the HOMO-LUMO's transitions. The ligand to metal charge transfer LMCT is the predominated character in the case of the $Th(OTf)_4$ and a combination of LMCT, $Th(CT)_4$ and $Th(CT)_4$ and $Th(CT)_4$ are complexes to show luminescence in the emission specter. In the case of the $Th(OTf)_4$, $Th(OTf)_4$, $Th(OTf)_5$, $Th(OTf)_5$ and $Th(OTf)_6$ compounds, the transitions are intramolecular charge transfer $Th(CT)_4$. The visible region of the $Th(OTf)_4$ is characterized by a rather intense band between 493 nm and 424 nm and LMCT transition character.

REFERENCES

- [1] E Runge; EKU Gross, Phys. Rev. Lett., **1984**, 52, 997.
- [2] (a) JF Wang; RY Wang; J Yang; ZP Zheng; MD Carducci; T. Cayou; N Peyghambarian; GE Jabbour, J. Am. Chem. Soc., **2001**, 123, 6179.
- (b) V Christou; OV Salata; TQ Ly; S Capecchi; N J Bailey; A Cowley; AM Chippindale, Synth. Met., 2000, 7, 111-112.
- (c) S Eliseeva; O Kotova; O Mirzov; K Anikin; L Lepnev; E Perevedentseva; A Vitukhnovsky; N Kuzmina, Synth. Met., **2004**, 141, 225.
- (d) YK Kim; SW Pyo; DS Choi; HS Hue; SH Lee; YK Ha; HS Lee; JS Kim; WY Kim, Synth. Met., **2000**, 113, 111-112.
- (e) H Xin; FY. Li; Mei Shi; ZQ Bian; CH Huang, J. Am. Chem. Soc., 2003, 125, 7166.
- [3] (a) SF Li; GY Zhong; WH Zhu; FYJF Li; W Pan; H. Tian, J. Mater. Chem., 2005, 15, 3221.

- (b) PP Sun; JP Duan; HT Shih; CH Cheng, Appl. Phys. Lett., 2002, 81, 792.
- (c) JB Yu; L Zhou; HJ Zhang; YX Zheng; HR Li; RP Deng; ZP Peng; ZF Li, Inorg. Chem., 2005, 44, 1611.
- (d) C Adachi; MA Baldo; SR Forrest, J. Appl. Phys., 2000, 87, 8049.
- [4] A Ipatov; F Cordova; LJ Doriol; ME Casida, J. Mol. Struct.: THEOCHEM., 2009, 914, 60.
- [5] (a) T Liu; HX Zhang; BH Xia, J. Phys. Chem. A., 2007, 111, 8724.
- (b) X Zhou; HX Zhang; QJ Pan; BH Xia; AC Tang, J. Phys. Chem. A., 2005, 109, 8809.
- (c) X Zhou; AM Ren; Feng, J. K. J. Organomet. Chem., 2005, 690, 338.
- (d) A Albertino; C Garino; S Ghiani; R Gobetto; C Nervi; L Salassa; E Rosenverg; A Sharmin; G Viscardi; R Buscaino; G Cross; MJ Milanesio, Organomet. Chem., **2007**, 692, 1377.
- [6] GA Lawrance, Chem. Rev., 1986, 17, 86.
- [7] A Becke, Phys. ReV., 1988, A 38, 3098.
- [8] JP Perdew. Phys. ReV. B. 33., 1986, 8822.
- [9] EKU Gross; W Kohn, AdV. Quantum Chem., 1990, 21, 255.
- [10] EUK Gross; JF Dobson; M Petersilka, Density Functional Theory. In Springer Series "Topics in Current Chemistry", Nalewajski, R F Ed, Springer: Heidelberg., **1996**.
- [11] ME Casida, In Recent Advances in Density Functional Methods, Chong, D P Ed, World Scientific: Singapore., **1995**, 155.
- [12] R Bauernschmitt; R Ahlrichs, J. Chem. Phys., 1996, 104, 9047.
- [13] A Rosa; G Ricciardi, unpublished results.
- [14] EJ Baerends; DE Ellis; P Ros, Chem. Phys., 1973, 2, 41.
- [15] CS Kramer; TJJ Muller, Eur. J. Org. Chem., 2003, 18, 3534.
- [16] (a) AP Kulkarni; PT. Wu; TW Kwon; SA. Jenekhe, J. Phys. Chem., 2005, 109, 19584.
- (b) M Sailer; M Nonnenmacher; T Oeser; TJ Muller, J. Org. Chem. 2006, 423.
- [17] (a) RY Lai; EFL Fabrizio; SA Jenekhe; AJ Brd, J. Am. Chem. Soc., 2001, 123, 9112.
- (b) RY Lai; X Kong; SA Jenekhe; AJ Bard, J. Am. Chem. Soc., 2003, 125, 12631.
- [18] M Kurosawa; T Nankawa; T Matsuda; K Kubo; M Kurihara; H Nishihara, Inorg. Chem., 1999, 38, 5113.