Available online <u>www.jocpr.com</u>

Journal of Chemical and Pharmaceutical Research, 2014, 6(11): 923-936

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Simulation of three-phase separator in petroleum industry

Mohammad Rashid Jahangiri and Mohammad Nouri

Azad University, Arak Branch, Department of Production Engineering and Gas Transmission, Arak, Iran

ABSTRACT

Crude oil is produced from oil reservoirs contain water, gas, salt, sediment and small amounts of metals are, for the preparation of this fluid for export refineries that produce food products can be separated gross be water to Isolation crude oil and gas in the Vessel called separator is used most commonly used three-phase separators are horizontal, multi-stage operation is performed during the first stage of separation near the oil tanks do be called the wellhead separators are known. Software has been studied to implement content Aspen Hysys 2006 software is used, it is considered a horizontal three-phase separator, the results indicate that differences in the number of parameters low Mddvdy and in most cases is negligible for low margin is proposed.

Keywords: Simulated three-phase separator, oil separation operation, constant pressure

INTRODUCTION

A three-phase separator gas - liquid separation device for gaseous, liquid and low-density (eg crude oil), highdensity liquid (eg water) and sometimes solid particles (eg, sand along with the output shaft), is used as defined. This equipment is widely used in many chemical processes, such as offshore oil and gas and petrochemical projects are.

The crude oil is taken out from, below the surface of soil by digging and pumping through machine. Then the crude oil taken is processed to remove the impurities like salts, sulphur and water.

The main task of the three-phase separator , providing conditions in which the different phases present in a stream based on the difference in density, are separated . In other words , the heavier aqueous phase dispersed in a hydrocarbon phase due to buoyancy force upward move is separated from the aqueous phase . Also , due to the higher density of the aqueous phase to the organic phase to the organic phase is separated downward . Organic phase droplets suspended in the gas phase , due to the downward force of gravity to be separated from the gas phase to the organic phase join. The mechanism of phase separation due to the Drjdaknndh , except household type separator is a gravity separation . The mechanism of separation in dividing two-phase gas - liquid separator , liquid - liquid , based on the same principle.

A three-phase gravity separators, Horizontal and Vertical Tanks are designed to be, it depends on the conditions and such limits of design variables space to install a separator (this is important on offshore platforms) is. In this paper, three-phase separation due to the very wide applications (especially in the cross-shore) have been considered.

Despite the separation mechanism in this type of separation, the separation mechanism is much simpler than the separators such as cyclones (separation in cyclone with centrifugal force is used) or CFD analysis of slot jet impingement cooling on the curved surface, the design of this type of separator always easy is not associated with and requires experience, a designer and having similar data.

The complexity of this type of spacers because the number of variables involved in determining the appropriate size of the separator is high, such as the separator, the separator diameter, Bfl success, Bfl height, the fluid residence time, light and heavy fluid residence time many variables other. Similar Heat Transfer Between Impinging Circular Air Jet and Finned Flat Plate Also, no clear and explicit relationship between variables have been told not to communicate, which adds to the difficulty. This causes never designed a unique solution does not exist.

EXPERIMENTAL SECTION

The model explains

Crude oil will have the following characteristics related to the oil separator to make it a three-phase gas, oil and water separation can be simulated, The results of the simulations to compare with experimental data.

stream		0	li Sea Line				
Discription							
Vapour frac.			0.0868				
Temperature (0 C)		26.32				
Pressure (barg)			12				
Molar Flow (kg m	ole / hr)	2	2510.9927				
Mass Flow (kg/hr)	3	21414.531				
Liq .Vol Flow (ba	rrel / day)		388.1384				
Enthalpy (kw)		-	-7.17E+06				
Density (kg/m3)			403.4808				
Mole wt.			128				
Spec.Heat (KJ/kg-	-c)		1.9971				
Therm Cond (w/m	-k)						
Viscosity (cp)							
Z Factor							
Sur Tension (dyne	e/cm)						
Std. Density (kg/n	n3)						
Nitrogen (mole fra	c.)		0.0003				
H2S (mole frac.)			0				
CO2 (mole frac.)			0.0068				
H2O (mole frac.)			0.3018				
Methane (mole fra	ac.)		0.0875				
Ethane (mole frac	.)		0.0376				
Propane (mole frac	:.)		0.0398				
i-Butane (mole fra	ıc.)		0.0126				
n-Butane (mole fr	ac.)		0.0265				
i-Pentane (mole fr	ac.)		0.0163				
n-Pentane (molr fi	ac.)		0.0218				
KC6 (mole frac.)			0.0429				
KC7 (mole frac.)			0.0579				
KC8 (mole frac.)			0.0399				
KC9 (mole frac.)			0.0367				
KC10 (mole frac.)		0.0342				
KC11 (mole frac.)		0.0245				
C12+ (mole frac.))		0.213				
component name	$T_{C}(0C)$	P _C (barg)	V _C (m3/kg mole)	W	Liq.Dens (kg/m3)	Mol.wt	Boil.pt (
KC6	234.65	32.82	0.35	0.271	689.9997	84	63.9
KC7	269.05	31.51	0.387	0.31	727	96	91.9
KC8	297.45	29.51	0.431	0.349	749	107	116.7
KC9	325.15	27.37	0.481	0.392	768	121	142.2
KC10	349.05	25.3	0.537	0.437	782	134	165.8
KC11	370.15	23.51	0.587	0.479	793	147	187.2
C12+	627.31	9.95	1.6455	0.9071	921	408	463.1

Before it is better to have a precise definition of the term simulation, In order to obtain the simulation output data based on the input data and profile information processing devices (some of which are given to the software by the user) is.

The simulation software used in Aspen Hysys 2006 is a powerful software to simulate the processes of oil, gas and petrochemical, Simulation and Design Rating is done in two ways, in case Vessel Rating outputs object the design information is available regarding the changes in geometry and geometric characteristics of the input stream and change profile, but we checked Vessel design mode with input - output data is computed Vessel design, simulation or Rating is done.

The overview of the petroleum refining process and then we'll start working simulations.

At the beginning of each simulation process, we start with the Basis, the equation of state of the material used and the type of chemical reaction process is characterized

J. Chem. Pharm. Res., 2014, 6(11): 923-936

Component Lists		- P				
Master Component List	View	1				
Component List - 1	Add	1				
	Delete					
	Сору					
	Import					
	Export	5				
	Refresh]				
	Re-import]				
Components Fluid Pkgs	Hunotheticals	 Dil Manager	Beactions	Component Maps	User Properties	

After entering the Main Component of the software to choose the inlet feed

			Components Ard	able in the component cibrary		
			Match		View Filters	
Hypothetical			🔿 Sim Name	Full Name / Synonym	🔘 Formula	
Uther		<add pure<="" td=""><td>Methane Ethane</td><td>C1 C2</td><td>CH4 C2H6</td><td>-</td></add>	Methane Ethane	C1 C2	CH4 C2H6	-
		<-Substitute->	Propane i-Butane n-Butane	C3 i-C4 n-C4	C3H8 C4H10 C4H10	
		Remove>	n-Pentane n-Pentane n-Hexane n-Heptane	n-C5 C6 C7	C5H12 C5H12 C6H14 C7H16	
		Sort List	n-Octane n-Nonane n-Decane	C8 C9 C10	C8H18 C9H20 C10H22	
		View Component	n-C11 n-C12 n-C13	C12 C13	C12H26 C12H26 C13H28	
			📝 Show Synony	vms 📃 Cluster		
Selected Compone	ent by Type					

The choice of materials should be used to fit the equation of state is the best equation for edible ingredients are hydrocarbons Peng-Robinson equation is

J. Chem. Pharm. Res., 2014, 6(11): 923-936

Current Fluid Packages	Flowsheet - Fluid Pkg Associations	Property Package Selection
Basis-1 NC: 0 PP: Peng-Robinson View Add Delete Copy	Flowsheet Fluid Pkg To Case (Main) Ba Default Fluid Pkg Basis-1	Lee-Kesler-Plocker Margules MBWR NBS Steam Neotee Black Oil NRTL Leicholyte PRSV Sour SRK
Components Fluid Pkgs Hypotheticals Oil Man Enter PVT Environment	Fluid Pkg for New Sub-FlowSheets Use Default Fluid Pkg Use Parent's Fluid Pkg ager Reactions Component Maps User Pro	Component List Selection Component List -1 View Set Up Parameters Binary Coeffs StabTest Phase Order Rxns Tabular Notes Delete Name Basis-1 Property Pkg Peng-Robinson Edit Property Pkg Peng-Robinson

We can choose to enter a simulated environment with a current flow of information to enter, this information includes name, current, temperature, pressure, flow and composition of the feed ingredients are

NoName_2.hsc - Aspen HYSYS 2006 - aspenONE	
File Edit Simulation Flowsheet PFD Tools Window Help	
🗋 🙆 H 🕂 🖽 🛤 🎼 💳 📯 🔗 🐵 🖉 🛦	Environment: Case (Main) Mode: Steadu State
	Case (Main)
i: PPD - Case (Main)	199
HIN E HIN X PAY W H S Default Colour Scheme •	Š
	12
	2 d d
Uni Sea Line	
	D 55 1*
	EEA
	£.1
	Furt CRIDA
PFD 1	
	AIV
🛞 💿 🚞 🙆 🥹 🌻 🖭 🕺 🚽 🖉	EN 🔺 🖪 🏍 12:43 8.4 Y-11//T-/-V

Simulation by selecting a three-phase separator continue, enter the parameters associated with the separation of three current outputs are Run

J. Chem. Pharm. Res., 2014, 6(11): 923-936

17 PFD - Case (Main)	○ A ۶ 🕷 🖁 🗧) De	ault Colour Scheme	×
Oil Sea Line	Gas Oit Water			

However, we report our simulation results and comparison with experimental data, we can do it with Ctrl + R to bring up all the results of the Vessel

1		Case Name: C:\Program Files (x86)\AspenTech\Aspen HYSYS 2006\Cases\V-100A.hsc					
3		Unit Set: SI					
4	CANADA	Date/Time: Wed Jul 31 02:04:00 2013					
6 7 8	3 Phase Separator: V-100A						
9 10		CONNECTIONS					
11 12		Inlet Stream					
13	Stream Name	From Unit Operation					
14	Oil Sea Line						
15 16		Outlet Stream					
17	Stream Name	To Unit Operation					
18	Gas						
19	Oil						
20	Water						
21 22		Energy Stream					
23	Stream Name	From Unit Operation					
24							
25		PARAMETERS					

25					PARAN	IETERS						
27	Vessel Volume:		80.07 m3	Level SP: 50.00 %			Liquid Volur	me:	40.03 m3			
28	Vessel Pressure:	1100 kPa	Pressure Dr	op:	100.0 kPa *	Duty:	nd9194.3692140 9	0.0000 kJ/h	Heat Transfer Mode:	Heating		
29 30			User V	ariables								
31 32		RATING										
33 34		Sizing										
35	(Cylinder				Horizontal			Separator has a Boot Yes			
36	Boot Diameter:			1.067 m Boot Height:						3.200 n		
37	Volume:		80.07 m3	Diameter:		s =0	3.200 m*	Length:		9.600 n		
38 39				Leve	l Taps: Level	Tap Specif	ication					
40	Level Tap		PV High		PV	Low		OP High	OP Lov	v		
41 42				Level T	aps: Calcula	ted Level Ta	p Values					
43	Level Tap Liquid Level Aqueous Level											
44 45					Opt	ions						
0221	DV/West Trees Orabite	1		(0/)	400.00 *							

47 48	CONDITIONS										
49	9 Name Oil Gas Gas										
50	Vapour		0.0873		0.0000	1.0000	0.0000				
51	Temperature	(C)	26.3200 *		26.1941	26.1941	26.1941				
52	Pressure	(kPa)	1200.0000 *		1100.0000	1100.0000	1100.0000				
53	Molar Flow	2510.9888		1522.4021	232.2241	756.3626					
54	Mass Flow	(kg/h)	321414.5313 *		302474.8495	5310.3126	13629.3692				
55	Std Ideal Liq Vol Flow	(m3/h)	388.1381		360.0101	14.4700	13.6581				
56	Molar Enthalpy	(kJ/kgmole)	-3.553e+005		-4.297e+005	-9.268e+004	-2.861e+005				
57	Molar Entropy	(kJ/kgmole-C)	279.2		407.9	170.6	54.02				
58	Heat Flow	(kJ/h)	-8.9204e+08	-8.9204e+08 -6.5410e+08 -2.1			-2.1642e+08				
59 60			PROPE	RTIES							
61	Name	Name Oil Sea Lin			Gas	Water					
62	Molecular Weight		128.0	198.7	22.87	18.02					
63	Hyprotech Ltd.		Aspen HYSYS Versio	n 2006 (20.0	.0.6728)		Page 1 of 2				

Licensed to: LEGENDS

* Specified by user.

J. Chem. Pharm. Res., 2014, 6(11): 923-936

1	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~		Case N	lame:	C:\Program Files	(x86)\Asp	enTech\Aspen HYSYS 200	06\Cases\V-100A.hsc
3			Unit Se	t	SI			
4	CANADA		Date/T	ime:	Fri Aug 02 12:18:	07 2013		
6 7 8	3 Phase Separator:	V-100A (contin	ued)				
9			PROP	ERTIES				
11	Name Oi	I Sea Line	Oi	1	Gas	1	Water	
12	Molar Density (kgmole/m3)	3.134		4.299	0	.4631	55.87	
13	Mass Density (kg/m3)	401.2		854.2		10.59	1007	
14	Act. Volume Flow (m3/h)	801.1		354.1		501.4	13.54	
15	Mass Enthalpy (kJ/kg)	-2775		-2162		-4053	-1.588e+004	
16	Mass Entropy (kJ/kg-C)	2.181		2.053		7.459	2.998	
18	Mass Heat Capacity (kJ/kgmole-C)	204.4		1 881		2 003	/ / 311	
19	Lower Heating Value (kJ/kgmole)			1.001			3.501e-002	
20	Mass Lower Heating Value (kJ/kg)	تىپ				1000	1.943e-003	
21	Phase Fraction [Vol. Basis]	3.496e-002				(1 		
22	Phase Fraction [Mass Basis]	1.538e-002	2.	122e-314	2.122	e-314	2.122e-314	
23	Partial Pressure of CO2 (kPa)	42.24		0.0000		39.48	0.0000	
24	Cost Based on Flow (Cost/s)	0.0000		0.0000	0	.0000	0.0000	
25	Act. Gas Flow (AC I_m3/h)					501.4		
26	Avg. Liq. Density (kgmole/m3)		6.469		4.229		16.05	55.38
27	Specific Heat (kJ/kgmole-C)		254.4		373.7		45.81	77.69
28	Std. Gas Flow (STD_m3/h)	5.93	7e+004	(3.600e+004		5491	1.788e+004
29	Std. Ideal Lig. Mass Density (kg/m3)		828.1		840.2		367.0	997.9
30	Act. Lig. Flow (m3/s)		0.1023		9.836e-002		0.0000	3.760e-003
31	7 Factor		100				1202	<u></u>
32	Watson K		11.63		11.63		17.32	8 522
33	Liser Property		11.00		11.00		11.02	0.022
24	Bartial Prossure of H2S (kBa)		0.0000		0.0000		0.0000	0.0000
26	College D		1.024		1.000	-	1 000	0.0000
25			1.034		1.025		1.222	1.120
36	Cp/CV		1.005	3	1.023		1.280	1.148
37	Heat of Vap. (KJ/Kgmole)	2.104	4e+005		2.940e+005		1.5/8e+004	3.693e+004
38	Kinematic Viscosity (cSt)		145		7.448		1.065	0.8608
39	Liq. Mass Density (Std. Cond) (kg/m3)		867.5		863.2		122	1015
40	Liq. Vol. Flow (Std. Cond) (m3/h)		370.5		350.4			13.43
41	Liquid Fraction		0.9127		1.000		0.0000	1.000
42	Molar Volume (m3/kgmole)		0.3191		0.2326		2.159	1.790e-002
43	Mass Heat of Vap. (kJ/kg)		1643		1480		689.9	2049
44	Phase Fraction [Molar Basis]		0.0873		0.0000		1.0000	0.0000
45	Surface Tension (dyne/cm)				20.70		· · · · ·	71.88
46	Thermal Conductivity (W/m-K)				0.1282	-	2.947e-002	0.6128
47	Viscosity (cP)		100		6 363		1.128e-002	0 8667
48	Cv (Semi-Ideal) (k.l/komole_C)		246 1		365.4		37.49	69 37
40	(w/kgillole-C)		240.1		000.4		57.49	09.37

You can also draw graphs for various parameters which we will draw some of these parameters.

J. Chem. Pharm. Res., 2014, 6(11): 923-936

RESULTS AND DISCUSSION

By comparing the data in the table below some information from the laboratory of the Institute of Oil and some have taken control of 24-hour average computer simulation results to verify the correct functioning of the separator will see. The following table shows the main parameters include temperature, pressure Vflv computer control, density and viscosity of the Petroleum Industry Research Laboratories and other parameters are measured.

Separator Experimental Data

stream	Oli Sea Line	Gas out let	Oil out let	Water out let
Discription				
Vapour frac.	0.0868	1	0	0
Temperature (0 C)	26.32	26	26	26
Pressure (barg)	12	11	11	11
Molar Flow (kg mole / hr))	2510.9927	217.8823	1536.6072	756.5032
Mass Flow (kg/hr)	321414.531	4911.4927	302870.8438	13632.1816
Liq .Vol Flow (m3 / hr)	388.1384	13.4859	360.9915	13.661
Enthalpy (kw)	-7.17E+06	555165	-1.49E+06	-6.23E+06
Density (kg/m3)	403.4808	11.4825	853	1007.6971
Mole wt.	128	22.542	197.1036	18.02
Spec.Heat (KJ/kg-c)	1.9971	2.0174	1.8926	4.3111
Therm Cond (w/m-k)		0.0297	0.1303	0.6112
Viscosity (cp)		0.0113	6.7568	0.8884
Z Factor		0.9511	0.112	0.0087
Sur Tension (dyne/cm)			20.8835	72.0689
Std. Density (kg/m3)			860.3945	1014.916
Nitrogen (mole frac.)	0.0003	0.003	0.0001	0
H2S (mole frac.)	0	0	0	0
CO2 (mole frac.)	0.0068	0.0349	0.0061	0.0002
H2O (mole frac.)	0.3018	0.0028	0.0005	0.9998
Methane (mole frac.)	0.0875	0.716	0.0414	0
Ethane (mole frac.)	0.0376	0.1477	0.0405	0
Propane (mole frac.)	0.0398	0.0619	0.0563	0
i-Butane (mole frac.)	0.0126	0.0086	0.0194	0
n-Butane (mole frac.)	0.0265	0.0136	0.0414	0
i-Pentane (mole frac.)	0.0163	0.0035	0.0261	0
n-Pentane (molr frac.)	0.0218	0.0036	0.0351	0
KC6 (mole frac.)	0.0429	0.0028	0.0697	0
KC7 (mole frac.)	0.0579	0.0014	0.0944	0
KC8 (mole frac.)	0.0399	0.0004	0.0651	0
KC9 (mole frac.)	0.0367	0.0001	0.0599	0
KC10 (mole frac.)	0.0342	0	0.0559	0
KC11 (mole frac.)	0.0245	0	0.04	0
C12+ (mole frac.)	0.213	0	0.348	0

Data are obtained from the above data together into Hysys and compare

	Experimental	Hysys	Experimental	Hysas	Experimental	Hysys	Experimental	Hysys
stream	Oli Sea L	line	Gas out	t let	Oil out	let	Water ou	ut let
Discription								
Vapour frac.	0.0868	0.0873	1	1	0		0	
Temperature (0 C)	26.32	26.32	26	26.19	26	26.19	26	26.19
Pressure (barg)	12	12	11	11	11	11	11	11
Molar Flow (kg mole / hr)	2510.9927	2511	217.8823	232.2	1536.6072	1522	756.5032	756.4
Mass Flow (kg/hr)	321414.5313	321415	4911.4927	5310	302870.8438	302501	13632.1816	13630
Liq .Vol Flow (m3/hr)	388.1384	388.1	13.4859	14.47	360.9915	350	13.661	13.43
Enthalpy (kw)	-7.17E+06		555165.004		-1.49E+06		-6.23E+06	
Density (kg/m3)	403.4808	401	11.4825	10.59	853	863.2	1007.6971	1007
Mole wt.	128	128	22.542	22.87	197.1036	198.7	18.02	18.02
Spec.Heat (KJ/kg-c)	1.9971		2.0174		1.8926		4.3111	
Therm Cond (w/m-k)			0.0297	0.02947	0.1303	0.1282	0.6112	0.6128
Viscosity (cp)			0.0113	0.0128	6.7568	6.363	0.8884	0.8667
Z Factor			0.9511		0.112		0.0087	
Sur Tension (dyne/cm)					20.8835		72.0689	
Std. Density (kg/m3)					860.3945		1014.916	997.9
Nitrogen (mole frac.)	0.0003	0.0003	0.003	0.002847	0.0001	0.00006	0	0
H2S (mole frac.)	0	0	0	0	0	0	0	0
CO2 (mole frac.)	0.0068	0.0068	0.0349	0.035895	0.0061	0.00565	0.0002	0.000174
H2O (mole frac.)	0.3018	0.3018	0.0028	0.003192	0.0005	0.00051	0.9998	0.999826
Methane (mole frac.)	0.0875	0.0875	0.716	0.702474	0.0414	0.03715	0	0
Ethane (mole frac.)	0.0376	0.0376	0.1477	0.153261	0.0405	0.03836	0	0
Propane (mole frac.)	0.0398	0.0398	0.0619	0.066243	0.0563	0.05553	0	0

J. Chem. Pharm. Res., 2014, 6(11): 923-936

i-Butane (mole frac.)	0.0126	0.0126	0.0086	0.009287	0.0194	0.01936	0	0
n-Butane (mole frac.)	0.0265	0.0265	0.0136	0.014693	0.0414	0.04146	0	0
i-Pentane (mole frac.)	0.0163	0.0163	0.0035	0.003755	0.0261	0.02631	0	0
n-Pentane (molr frac.)	0.0218	0.0218	0.0036	0.003871	0.0351	0.03536	0	0
KC6 (mole frac.)	0.0429	0.0429	0.0028	0.002676	0.0697	0.07034	0	0
KC7 (mole frac.)	0.0579	0.0579	0.0014	0.00129	0.0944	0.09529	0	0
KC8 (mole frac.)	0.0399	0.0399	0.0004	0.000362	0.0651	0.06575	0	0
KC9 (mole frac.)	0.0367	0.0367	0.0001	0.000108	0.0599	0.06051	0	0
KC10 (mole frac.)	0.0342	0.0342	0	0.000036	0.0559	0.0564	0	0
KC11 (mole frac.)	0.0245	0.0245	0	0.000011	0.04	0.0404	0	0
C12+ (mole frac.)	0.213	0.213	0	0	0.348	0.35128	0	0

CONCLUSION

According to the table above, all the parameters are so close together that differ only slightly reduce the flow of oil and gas output difference the following suggestions are presented:

1- Oil and gas output flow transmitters are calibrated, then the comparison is done.

2- Not resolve the problem, open the gas orifice orifice plate flow transmitter it is possible to visit the larger pores of corrosion that have openings with welding and grinding and turning back to normal, if the problem did not solve the orifice plate the transmitter will be replaced.

3- Transmitter Vortex flow of oil from the tank to clean it out and sticking Scale, Scale possibility of sticking to the weight of the Vortex changed and the measurement error is.

REFERENCES

IPS-E-PR-880. (1997). Engineering Standard for Process Design of Gas (Vapor)-Liquid Separators.
 Aspen Hysys 2006 Software Guide.

[3] Z. Guoyan. (2007). "Numerical Simulation and Experimental Staudy on the Performance of Gas/Liquid Spiral Separator." School of Mechanical engineering. East China University of Science and Technology, Shanghi, China.

[4] Ferhat M. Erdal, Siamack A. Shirazi, OvadiaShoham, Gene E. Kouba. (**1996**). "CFD Simulation of Single-Phase and Two-Phase Flow in Gas-Liquid Cylindrical Cyclone Separators." U.S.A ,6-9 October.

[5] H. Luchang. L. Yuejin, L. He'an. (2007). "Numerical Simulation of Gas Holdup Distribution in a Standard Rushton Stirred Tank Using Discrete Particle Method." College of Chemical Engineering, Xiangtan University, Xiangtan 411105, China-Chin. J. Chem. Eng., 15(6) 808-813.

[6] R.K. SHARMA, S.A. IQBAL and M.IBRAHIM. (**2012**). "Adulteration-High Speed Diesel (HSD) with superior Kerosene / Mto." Ultra Engineer, Vol.1(1), 115-121.

[7] R.E. SHELKE and L.B. BHUYAR. (2009). "Heat Transfer Between Impinging Circular Air Jet and Finned Flat Plate and Validation of Results using Artificial Neural Network." Oriental Journal of Computer Science & Technology, Vol. 2(1), 63-67.

[8] R.E. SHELKE and L.B. BHUYAR. (2009). "Study and Model Formulation for Curved Surface Using Computational and Fluid Dynamics (CFD)." Oriental Journal of Computer Science & Technology, Vol. 2(1), 75-79.