Journal of Chemical and Pharmaceutical Research, 2014, 6(10):281-290

Research Article

ISSN: 0975-7384 CODEN(USA): JCPRC5

Selective catalytic reduction of NO with NH₃ on stannic and iron bimetal oxides/attapulgite catalysts

Feng Xiao¹, Yunjie Gu¹, Zhe Tang², Zhidong Chen¹ and Qi Xu^{2*}

¹School of Petrochemical Engineering, Changzhou University, Changzhou, Jiangsu Province, China ²School of Chemical and Biological Engineering, Yancheng Institute of Technology, Yancheng, Jiangsu Province, China

ABSTRACT

A novel low temperature selective catalytic reduction (SCR) denitration catalyst (1/2SFA) was developed by hydrothermal method in the work and used for NH₃-SCR reaction. The results show the developed SFA catalyst has excellent catalytic activity for SCR of NO with NH₃, the NO conversion is up to 96.4% at 200°C, Furthermore, it has good catalyst activity at low temperature (<160°C), wide optimum reaction windows (160-280°C, the NO conversion >90%), and high resisted-poison ability to SO₂. The catalyst was characterized by Scanning electron microscope (SEM), N₂ adsorption, X-ray diffraction (XRD) and Fourier transform infrared reflectance spectroscopy (FTIR). Besides, the possible reaction mechanism was also involved. It shows that there are existence of interactions between SnO₂ and γ -Fe₂O₃ on the surface of attapulgite. The γ -Fe₂O₃ can restrain the growth of SnO₂ crystal. And SnO₂ can improve the dispersions of γ -Fe₂O₃ particles to form smaller crystal or amorphous particles. In addition, SnO₂ can enhance the ability of catalyst to resist SO₂ poisoning.

Key words: Stannic and iron bimetal oxides; attapulgite; selective catalytic reduction; denitration catalysts; hydrothermal method.

INTRODUCTION

Nitrogen oxides (NO_x) mainly come from coal-fired flue gas and automobile exhaust, which causing photochemical smog, acid rain, ozone depletion and greenhouse effects. Therefore, it is the high time for us to reduce emissions of these harmful compounds. The selective catalytic reduction (SCR) is known as one of the most efficient technologies for eliminating NO_x from mobile vehicles and stationary power sources [1].

As well known, iron oxide has well NH₃-SCR NO_x performance, and remarkable H₂O durability at high temperature about 300-500°C. Such as, Ma et al. [2] reported the Fe-BEA catalyst prepared by liquid ion exchange method could gain about 100% NO_x conversion at 350-500°C. Qi et al. [3] reported the Fe/ZSM-5 catalyst shows over 90% NO conversion at range of 350 to 500°C. And after pretreatment in 10% H₂O at 700°C, the Fe/ZSM-5 still exhibits high activities at temperature higher than 400°C. Others mentioned that Fe-ZSM-5 [4] shown a maximum NO_x conversion exceeding 90% at 400-550°C in the feed gases with 2% H₂O.

However, the high-temperature SCR technology requires catalysts have the ability to inherit the toxicity of high sulphur and dust [5]. On the contrary, in the low-temperature SCR technology, the catalyst is located after desulfurizer and dust controller extraction. Hence, it doesn't need high toxicity-resisted ability of sulphur and dust. Moreover, the active metal in low-temperature SCR catalyst can't be easily aggregated together, which causes it has high stability. Thus, the low-temperature SCR technology nowadays gets more and more attention. Many researches were devoted themselves to doing this work and have found that adding additives is one effective way to improve the low-temperature SCR performance of iron-based catalysts. Such as, Cu-Fe/ZSM-5 catalysts [6,7], iron titanate

catalyst [8], Mn-FeO_x, Fe-Mn/TiO₂, Fe-Mn/USY catalysts [9-11], Fe-Ce-Mn/ZSM-5, Fe-Ce-Mn/Ti catalysts [12,13].

According to my knowledge, there were no literatures reported Sn-Fe catalysts using in NH₃-SCR. More important is that many reports demonstrate Sn could improve SCR performance. Zhiming Liu found SnO₂/Al₂O₃ catalysts reveal significant performance for selective catalytic reduction of NO_x with propene [14]. Huazhen Chang found that SnO₂ modified MnO_x-CeO₂ catalyst can improve the SCR performance and enhance the resistance to SO₂ [15]. Besides, Xiaoliang Li found there was the synergistic effect between SnO₂ and CeO₂ in the Ce₄Sn₄O_x catalyst, which result in the better catalytic performance in a broad temperature range from 100°C to 400°C for NH₃-SCR [16].

In this work, we used attapulgite (ATP) as support, due to its large surface area, excellent activity and chemical adsorption property and low cost [17,18], to prepare the SFA catalysts, and investigated their catalytic performances for the NO removal during the simulated flue gas in order to discover the effect of Sn in NH_3 -SCR of SFA catalyst. All the samples were characterized by a series of characterization methods, such as Scanning electron microscope (SEM), N₂ adsorption, X-ray diffraction (XRD) and Fourier transform infrared spectrum (FTIR).

EXPERIMENTAL SECTION

1.1 Materials and Chemicals

The raw ATP was provided by Nanjing University Zijin Co. Ltd. (Jiangsu, China). $SnCl_4 \cdot 4H_2O$, $Fe(NO_3)_3 \cdot 9H_2O$, citric acid monohydrate and anhydrous ethanol were purchased from China Chemical Reagent Co. Ltd., and used without further purification.

1.2 Synthesis of SFA Catalysts

1.2.1 Preparation of ATP

After calcining at 300°C for 2 h, the raw ATP was treated in 3M acetic acid solutions at 80°C for 4 h under reflux and magnetic string and impregnated for 20 h. Then, it was washed with distilled water to pH = 7 and dried at 105°C overnight. Finally, ATP was obtained after grinding.

1.2.2 Synthesis of SFA catalysts

The SFA catalysts were prepared by conventional hydrothermal method. In the typical process, 3 g of ATP was dispersed in 40mL ethanol solution at ultrasonic dispersion (45 kHz) for 20 min. Afterward, the certain mass of SnCl₄·4H₂O, 6mmol Fe(NO₃)₃·9H₂O and 1 g citric acid were added into the solution with stirring until formed sol. The solution was transferred into a Teflon-Lined stainless steel autoclave, sealed, and maintained at 180°C for 12 h, and subsequently cooled in ambient environment to room temperature. The precipitate was filtered, washed with deionized water and absolute ethanol for three times, and dried in vacuum at 60°C for 10 h. The catalysts were gained finally by calcining at 400°C in air in a muffle furnace. The catalysts were denoted as aSFA, where a is the molar of Sn/Fe (a=1/3, 1/2, 2/3), S, F and A are on behalf of SnO₂, γ -Fe₂O₃ and ATP, respectively. The SA (SnO₂/ATP) and FA (Fe₂O₃/ATP) are the reference samples prepared with the same method.

1.3 Characterization

All the samples were characterized via Scanning electron microscopy (SEM), X-ray diffraction (XRD), FT-IR spectra and N_2 adsorption.

SEM was performed on a scanning electron microscope FEI QUANTA200 operating at 3.00 kV to observe the morphology of the catalysts.

The powder X-ray diffraction datum were collected on a Rigaku D/MAX-2500PC diffractometer operated at 40 kV and 40mA with nickel-filtered Cu K α radiation ($\lambda = 1.5406$ Å). The data was collected in the 2 θ range 5-80° with a step size of 0.02° and scan rate of 4° min⁻¹.

FT-IR spectra were recorded by a Nicolet 460 spectrometer using the KBr powder technique with diffuse reflectance sampling accessory at a resolution of 4 cm^{-1} at room temperature.

 N_2 adsorption isotherms of the catalytic materials were measured on an ASAP 2010 Micrometritics. The catalyst surface area and micropore volume were determined from the adsorption branch of the isotherms by applying the BET equation and the t-plot formalism, respectively. Prior to the nitrogen adsorption at -190°C the samples were outgassed at 400°C in vacuum overnight.

1.4 NH₃-SCR Activity Test

The SCR of NO using NH₃ as reluctant was carried out between 80°C and 280°C at atmospheric pressure with a quartz tubular down flow reactor (inner diameter 6mm). The catalyst powder (1.25mL, \approx 500 mg, particle size < 180 µm) was placed in the reactor. The mixed gases consisting of NO (600ppm), NH₃ (600ppm), O₂ (3 vol. %), 0 or 200ppm SO₂ and N₂ [19], were firstly pre-heated in a gas mixer and then added into the reactor. The content of the outlet gases was online analyzed and monitored by the Flue Gas Analyzer (Vario Plus, German MRU Ltd.). The gas hourly space velocity (GHSV) is 32,000 h⁻¹ and the NO conversion is calculated as follows [20]:

$$NO_{x} conversion(\%) = \frac{[NO]_{in} - [NO_{x}]_{out}}{[NO]_{in}} \times 100$$

where NO_x is the sum of the NO and NO₂ concentrations. The maximum standard deviation of NO_x conversion and N₂ selectivity are $\pm 1\%$.

The flow chart of catalyst NH_3 -SCR activity test is shown in the Fig. 1. There are three sections are plenum section (left), reaction section (middle) and analysis section (right), respectively.

RESULTS AND DISCUSSION

2.1 Catalyst Characterization

X-ray patterns of all the samples are shown in Fig. 2. The diffraction peaks in Fig. 2a at the 2 θ of 8.5°, 13.7°, 19.7° and 27.3° are indexed to the (110), (200), (040), (400) lattice planes of ATP [21], which are good agreement with the reported ATP results (JCPDS No. 021-0958) [22]. Furthermore, the characteristic reflections for ATP are observed in all of the samples (Figs. 2b-f), which suggests that the structure of ATP is maintained and not destroyed by the modification process. When the iron was introduced into ATP, the characteristic diffraction peaks of γ -Fe₂O₃ appeared at $2\theta=30.53^{\circ}$, 35.48° , 57.34° , 63.02° , indexed to the (220), (331), (233), (440) lattice planes of γ -Fe₂O₃ (Fig. 2b). The result indicates γ-Fe₂O₃ is formed in FA (Fe₂O₃/ATP). Further impregnating tin into FA (Figs. 2c-e) or ATP (Fig. 2f), the characteristic diffraction peaks of SnO_2 at $2\theta=26.57^{\circ}$ (110), 33.86° (101), 51.77° (211) were observed, which demonstrates the formation of SnO₂. Carefully observing, it was found with the increasing amounts of SnO₂, the characteristic reflection peaks of γ -Fe₂O₃ will become weaker and weaker (Figs. 2c-d) until nearly disappear in 2/3 SFA (Fig. 2e). While the peaks of SnO₂ in SFA catalysts don't change largely, only has slight increased. However, when there is no γ -Fe₂O₃ (SA, Fig. 2f), the diffraction peaks of SnO₂ are changed significantly both in intensity and width. Its intensity increase large and its width become very narrow. The results indicate that there are existence of some interactions between Sn (SnO₂) and Fe (γ -Fe₂O₃). The γ -Fe₂O₃ can retard the growth of SnO_2 crystal. And SnO_2 can improve the dispersions of γ -Fe₂O₃ particles to form smaller crystal or amorphous particles [23], which would be in favor of NH₃-SCR to NO.

Fig. 2 the XRD patterns of all the samples

Their porous structures were investigated by N_2 adsorption and desorption measurement. Fig.3 is their N_2 adsorption-desorption isotherms diagram, which shows that all the samples are characteristic of type IV isotherms with type H₃ hysteresis loops, indicating the formation of mesoporous [24]. Fig.4 is their typical BJH pore size distribution patterns. It can be seen that mesoporous exist in all the samples. ATP (A) has hierarchically organized porous size distributions with two small narrow pore sizes at 1.81 and 4.06 nm and two large shoulder pore sizes centered at 15.94 and 27.04 nm. After impregnation of γ -Fe₂O₃ into ATP (FA), the large shoulder pore sizes disappear, and many new small pore sizes between 1.80 and 20.50 nm appear. Further introduction of SnO₂ into FA (SFA), these small pore sizes become more concentration and uniform with increasing molar amount of SnO₂. When the molar ratio of Sn/Fe is up to 1/2, the small pore sizes (1/2SFA) are centralized at 3.78 nm. Namely, there is only one small pore size between 2.0 to 14.0 nm centered at 3.78 nm. However, further increase of the molar ratio of Sn/Fe into 2/3 (2/3SFA), several weak shoulder pore sizes centered at 10.53, 16.20 and 22.65 nm appear beside the small pore size at 3.78 nm. When there is only SnO_2 in the ATP (SA), beside the shoulder peak at 10.53 nm and small pore size at 3.78 nm, several other weak pore sizes appear, such as 8.61, 5.51 and 2.21 nm. Together with the results of XRD, they indicated that after impregnation of γ -Fe₂O₃ into ATP (FA), the γ -Fe₂O₃ crystals were formed in the surface of ATP and covered or blocked pore structure of ATP and formed some new pore structures by themselves. Because SnO₂ can improve the dispersions of γ -Fe₂O₃ particles, when continually introduced SnO₂ into FA, the pore size was becoming more concentration and uniform until the molar ratio of Sn/Fe was up to 1/2. Although γ -Fe₂O₃ can retard the growth of SnO₂, after the molar ratio of Sn/Fe got to 2/3, the SnO₂ crystal had a certain degree of growth and formed some very weak peaks by themselves. When there is only SnO_2 on ATP, SnO_2 crystal grown up quickly without retardation of γ -Fe₂O₃ and several other pores appear.

Fig. 3 the N₂ sorption-desorption isotherms of all the samples

The presumption is confirmed by the textural properties in Table 1 and SEM in Fig. 5. In Table 1, due to coverage and blocking of γ -Fe₂O₃, the BET special surface area and pore volume are decreased significantly from 171.0 m² g⁻¹, 0.55 cm³/g (ATP) to 133.1 m² g⁻¹ and 0.36 cm³/g (FA) respectively, after impregnation of γ -Fe₂O₃ into ATP. Because of the dispersions of SnO₂ to γ -Fe₂O₃, the γ -Fe₂O₃ crystal or particles become more small and uniform. The BET special surface area and pore volume should be increased gradually, like the results in Table 1.

Table 1 BET surface area and pore structure results of all the samples

Catalyst	Surface Area m ² /g	Pore Volume cm ³ /g	Pore Diameter Dv(d) nm
ATP	171.0	0.55	13.44
FA	133.1	0.36	10.68
1/3SFA	127.6	0.41	12.99
1/2SFA	138.7	0.42	11.72
2/3SFA	144.4	0.43	10.96
SA	165.3	0.45	9.58

More detail observation can be seen in SEM. Four typical samples are checked by SEM (shown in Fig.5). It can be seen in Fig. 5a that ATP is a uniform stick structure with smooth surface, which is favorable for adhesion between the coating and the substrate. But after impregnation of γ -Fe₂O₃ into ATP (FA), the ATP stick structure is hardly to observe, many big irregular particles (γ -Fe₂O₃) appear on the surface of ATP (Fig.5b), and the irregular particles (γ -Fe₂O₃) aggregate together, which may cause the BET special surface and pore volume decrease enormously and form some new pores by the aggregated particles (γ -Fe₂O₃). However, after a certain amount of SnO₂ is introduced into FA (1/2SFA), the aggregated particles disappear, ATP stick structure is clearly observed, and the loaded metal oxides are uniformly dispersed on the surfaces of ATP (Fig.5c), which are consistent with the results of BET (the BET special surface and pore volume increase and pore sizes get more uniform). When there is only SnO₂ on the surface of ATP (SA, Fig.5d), there appear many small irregular particles on or around the surface of ATP, resulting in formation of some new pores by the small irregular particles.

Fig. 5 the SEM images of four the samples, (a) ATP, (b) FA, (c) 1/2SFA and (d) SA

2.2. Catalytic Activity

2.2.1. The NH₃-SCR Activity

The NO conversions over various catalysts with different Sn/Fe molar ratios are shown in Fig.6. The results indicate that the Sn/Fe molar ratio has a great influence on the NO conversion. FA (γ -Fe₂O₃/ATP) catalyst has good activity at 200°C with 95.7% NO conversion. However, it has very narrow reaction window. Once the reaction temperature is high or below than 200°C, the catalytic activity (NO conversion) decreases quickly, especially at low temperature. The result indicates that the individual active metal γ -Fe₂O₃ on ATP has poor catalytic stability of NH₃-SCR to NO, especially at low temperature. However, when SnO₂ is introduced into FA, the phenomena have changed. The SFA catalyst has wide optimum reactive active window and higher catalyst activity at low temperature ($<160^{\circ}$ C). The 1/3 SFA has optimum SCR activity between 160 and 240°C with highest NO conversion (94.3%) closed to that of FA, and has better catalyst activity at other temperature (< 160° C or >240°C). The result indicates SnO₂ can activate the low temperature SCR activity of γ -Fe₂O₃ and stabilize the optimum SCR activity. When the molar ratio of Sn/Fe increases to 1/2, the SCR performance of catalyst is sequentially enhanced. The 1/2 SFA has superior SCR activity in the whole reaction temperature realm in all the catalysts. The reaction activity window is enlarged into 160 to 280°C, and the optimum NO conversion of 1/2SFA is higher than that of FA, up to 96.4 % at temperature range of 200 to 240°C. However, further increasing the molar ratio of Sn/Fe up to 2/3, the phenomena have changed. Although the catalyst (2/3SFA or SA) has large reaction windows, the catalyst activity is declined significantly. The optimum NO conversion is just only 79.8 % (quite lower than 95.7% NO conversion of FA). Its catalyst activity is similar to that of SA (SnO₂/ATP), indicating that most of the main active metaly-Fe₂O₃ is more possibly covered by the auxiliary reagent SnO₂. The results are agreement with the results of XRD and BET. When the molar ratio of Sn/Fe is below 1/2, SnO₂ is improving dispersion of γ -Fe₂O₃ on the catalyst to form smaller γ -Fe₂O₃ particles and itself is not so big to cover the active metal γ -Fe₂O₃ (The γ -Fe₂O₃ diffraction peaks can be found in XRD patterns of 1/2SFA in Fig.2 and there is no big pore size shoulder peak formed by SnO₂ in Fig.4). Since the total molar amount of exposed γ -Fe₂O₃ on the catalyst is constant, smaller γ -Fe₂O₃ is, stronger the catalyst activity is, lower the reaction energy barrier is. Hence, it has higher activity at low temperature ($< 160^{\circ}$ C). Moreover, the interaction of SnO₂ and γ -Fe₂O₃ inhibits the aggregation of γ -Fe₂O₃ particles and stabilizes the catalyst activity. However, when the molar ratio of Sn/Fe is up to 2/3, SnO₂ will be possible to cover the so small active metal γ -Fe₂O₃ (it is hard to find γ -Fe₂O₃ diffraction peaks in XRD patterns of Fig.2 and some larger shoulder peaks formed by SnO₂ appear in Fig.4), leading the catalyst activity of 2/3SFA is similar to that of SA (SnO₂/ATP).

In order to further investigate and understand the interaction between SnO₂ and γ -Fe₂O₃, three FT-IR experiments, γ -Fe₂O₃ (FA without ATP), SnO₂(SA without ATP) and γ -Fe₂O₃/SnO₂ (1/2SFA without ATP), were carried out. The result is shown in Fig.7. It can be seen that all the samples appear the absorption peaks at 3421 and 1630 cm⁻¹, which are attributed to the stretching vibrations of OH groups in the hydroxide structure as well as physically adsorbed water. Since the three samples are prepared and calcined in the same conditions, the intensities or areas of the bands are connected with the special surface area. Larger special surface area is, easier the water is to adsorb on the catalyst, stronger the bands is [25]. From the above results, SnO₂ can improve the dispersion of γ -Fe₂O₃ on ATP. Hence, the intensities of the bands at γ -Fe₂O₃/SnO₂ are larger than that of γ -Fe₂O₃. The characteristic peaks of γ -Fe₂O₃ and SnO₂ appear in the fingerprint region at 400-1100 cm⁻¹ (the inset picture in Fig. 7). For γ -Fe₂O₃, the bands at 538 and 466 cm⁻¹ are due to the stretching vibration of Fe-O [26]. The characteristic IR spectra of SnO₂ appear at 619 and 1041cm⁻¹ [27, 28]. However, in the γ -Fe₂O₃/SnO₂, the conditions changed. The characteristic peak of SnO₂ at 619 cm⁻¹ has red shifted to 581 cm⁻¹. In addition, all the characteristic peaks became very weak and board. These results demonstrate that there are interactions between SnO₂ and γ -Fe₂O₃ [29, 30], which can confirm the

NO Conversion(%) -- FA 1/3SFA 1/2SFA 2/3SFA SA Reaction Temperature (°C) Fig. 6 the NO conversions of all the catalysts %Transmitance γ-Fe2O3 SnO₂ γ-Fe2O3/SnO2 542--25 → 900 Wavenumbers(cm⁻¹) Fig. 7 the FTIR spectra of FA, SA and SFA without ATP SO₂ ON SO2 OFF NO conversation (%) FA SA 1/2SFA Time (min)

hypotheses from the XRD, SEM and BET conclusion. However, the detail interaction mechanism of SnO_2 and γ -Fe₂O₃ is not understood now, many works are underway.

2.2.2. Effect of SO2 on SCR Activity

In order to further understand the effect of reaction condition (SO₂) and SnO₂ on activity of the catalyst. Two kinds of SO₂ concentration (0ppm and 200ppm) are designed in the work and the corresponding results (NO conversion) are shown in Fig.8. It can be seen that in the absence of SO₂ the catalyst activity is as follows: 1/2SFA>FA>SA, the same with the above result. But after introduction of SO₂ into the reaction system, the catalyst activity is quickly declined and then stabilized at certain level. The declined degree of catalyst activity is as follows: FA>1/2SFA>SA, the final stable catalyst activity in presence of SO₂ atmosphere is 1/2SFA>SA>FA. The results suggest that SO₂ can poison partly the 1/2SFA catalyst activity of NH₃-SCR. This is an advantage of the low temperature of SCR technology in industry, whose catalyst is played after dust and sulfur extraction. In addition, the results show that SnO₂ has high sulfur tolerance ability compared with γ -Fe₂O₃.

2.3. FTIR Analysis

In order to investigate the mechanism of well sulfur tolerance of SnO_2 , the FTIR studies were carried out in our experiment with the spent catalysts, which were exposed in catalytic reaction gases with SO_2 or not at 200°C for 60 minutes, respectively, and the FTIR spectra are shown in Fig.9 (a: without SO_2 , b: with SO_2). The feed reaction gases contains 600ppm NO, 600ppm NH₃, 3 vol. % O_2 , 0 or 200ppm SO₂ and balanced gas N₂.

In Fig.9a, the obvious and strong adsorption peaks are attributed to vibration adsorption peaks of physically adsorbed water or supporter ATP (3417, 1656, 1000, 680 and 500 cm⁻¹) [24, 31, 32]. However, there is still existence of some weak peaks at range of 1230-1660 cm⁻¹, which are attributed to vibration of adsorbed nitrogen species, such as nitrite (1232 cm⁻¹) and monodentate (1550 cm⁻¹), bidentate (1329 cm⁻¹) and bridge nitrate (1613 cm⁻¹) [33-36]. Besides, the band at 1202 cm⁻¹ is ascribed to coordinated NH₃ on Lewis acid sites [33, 34, 37], but the band at 1414 cm⁻¹ assigned to the free of NH⁴⁺ on Brønsted acid sites [34] was not obviously. The results indicate that the mechanism of our NH₃-SCR of NO reaction is similar with the NH₂-NO mechanism [38, 39]. Firstly, NH₃ is adsorbed in the Lewis acid sites. Along with reduction of catalyst, the NH₃ is activated into -NH₂ (Eq. (1)). Then, the activation of -NH₂ interacts with NO to formation of intermediate nitrosamine (Eq. (2)). Finally, intermediate nitrosamine decomposes into N₂ and H₂O (Eq. (3)) as well as oxidation of catalyst (Eq. (4)) and condensation of OH⁻ (Eq. (5)). The possible reaction mechanism is shown in Sch. 1.

$$NH_{3} + M^{n+} + O^{2-} \to M^{(n-1)+} - NH_{2} + OH^{-}$$
(1)

$$M^{(n-1)+} - \mathrm{NH}_2 + \mathrm{NO} \rightarrow M^{(n-1)+} - \mathrm{NH}_2\mathrm{NO}$$
(2)

$$M^{(n-1)+} - \mathrm{NH}_2\mathrm{NO} \to M^{(n-1)+} + \mathrm{N}_2 + \mathrm{H}_2\mathrm{O}$$
 (3)

$$2M^{(n-1)+} + 1/2O_2 \to 2M^{n+} + O^{2-}$$
(4)

$$2OH^- \to H_2 O + O^{2-} \tag{5}$$

Sch. 1 Possible reaction mechanism of NH₃-SCR of NO

Fig. 9 the FTIR spectra of spent catalysts (a) in presence of SO_2 or not (b)

Fig.9b is the FT-IR spectra of the spent catalyst under SO₂. Similarly with the Fig. 9a, most of the obvious and strong adsorption peaks are attributed to vibration adsorption peaks of supporter ATP or physically adsorbed water. However, suffered from SO₂ poison, it emerges some new absorption peaks on the spent catalysts. The band at 1380 cm⁻¹ is attributed to asymmetric vibration mode of O=S=O, which is typical organic sulfate species with covalent S=O double bands [40]. The bands at 1142 and 627 cm⁻¹ are attributed to the free inorganic SO₄²⁻ [41], which implies the formation of ammonium sulfate, which may be reason of SO₂ poison to catalyst. The formation of ammonium sulfate will be possible to block the pore size and occupy or cover the active site leading the NH₃-SCR activity of catalyst decrease. For the FA catalyst these absorption peaks (1380, 1142 and 627 cm⁻¹) can be clearly observed. But they are not clear on SA and 1/2SFA. The results indicate that SnO₂ can inhibit the reaction of NH₃ and SO₂ to formation of (NH₄)₂SO₄ to decrease the poison of SO₂.

CONCLUSION

A novel low temperature SCR catalyst (1/2SFA) is developed in the work and used to NH₃-SCR NO reaction. The results show the developed SFA catalyst has excellent catalytic activity for SCR of NO with NH₃, the best NO conversion is up to 96.4 % at 200°C. Furthermore, it also has good catalyst activity at low temperature (<160°C), wide optimum reaction windows (160-280°C), and high resisted-poison ability to SO₂. The possible reaction mechanism is involved in the work. It shows that there are some interactions between SnO₂ and γ -Fe₂O₃ of the catalyst. The γ -Fe₂O₃ can restrain the growth of SnO₂ crystal. SnO₂ can improve the dispersions of γ -Fe₂O₃ particles to form smaller crystal or amorphous particles. Besides, SnO₂ can enhance the ability of catalyst to resist SO₂ poisoning.

Acknowledgements

This work was supported financially by the Innovation Fund Project of Yancheng Institute of Technology (YKB201106) and the Open Fund Project of Environmental Protection Department of Jiangsu Province (2012019).

REFERENCES

- [1] F Liu; H He. J. Phys. Chem. C., **2010**, 114(40), 16929-16936.
- [2] L Ma; H Chang; S Yang; L Chen; L Fu; J Li. Chem. Eng. J., 2012, 209, 652-660.
- [3] G Qi; Y Wang; R Yang. Catal. Lett., 2008, 121(1-2), 111-117.
- [4] P Metkar; M Harold; V Balakotaiah. Appl. Catal. B-Environ., 2012, 111-112(0), 67-80.
- [5] M Klimczak; P Kern; T Heinzelmann; M Lucas; P Claus. Appl. Catal. B-Environ., 2012, 111-112(0), 67-80.
- [6] A Sultana; M Sasaki; K Suzuki; H Hamada. Catal. Commun., 2013, 41, 21-25.
- [7] S Brandenberger; O Kröcher; A Tissler; R Althoff. Ind. Eng. Chem. Res., 2011, 50(8), 4308-4319.
- [8] F Liu; H He; C Zhang; Z Feng; L Zheng; Y Xie; T Hu. Appl. Catal. B-Environ., 2010, 96(3-4), 408-420.
- [9] S Yang; C Wang; J Li; N Yan; L Ma; H Chang. Appl. Catal. B-Environ., 2011, 110, 71-80.
- [10] Z Wu; B Jiang; Y Liu. Appl. Catal. B-Environ., 2008, 79(4), 347-355.
- [11] Q Lin; J Li; L Ma; J. Hao. Catal. Today, 2010, 151(3-4), 251-256.
- [12] G Zhou; B Zhong; W Wang; X Guan; B Huang; D Ye; H Wu. Catal. Today, 2011, 175(1), 157-163.

- [13] B Shen; T Liu; N Zhao; X Yang; L Deng. J. Environ. Sci., 2010, 22(9), 1447-1454.
- [14] Z Liu; J Li; J Hao. Chem. Eng. J., 2010, 165(2), 420-425.
- [15] H Chang; J Li; X Chen; L Ma; S Yang; J Schwank; J. Hao. Catal. Commun., 2012, 27(1), 54-57.
- [16] X Li; Y Li; S Deng; T Rong. Catal, Commun., 2013, 40, 47-50.
- [17] Y Deng; Z Gao; B Liu; X Hu; Z Wei; C Sun. Chem. Eng. J., 2013, 223(0), 91-98.
- [18] Q Fan; X Tan; J Li; X Wang; W Wu; G Montavon. Environ. Sci. Technol., 2009, 43(15), 5776-5782.
- [19] B Shen; Y Wang; F Wang; T Liu. Chem. Eng. J., 2014, 236(0), 171-180.
- [20] H Xu; Y Wang; Y Cao; Z Fang; T Lin; M Gong; Y Chen. Chem. Eng. J., 2014, 240(0), 62-73.
- [21] J Cao; G Shao; Y Wang; Y Liu; Z Yuan. Catal. Commun., 2008, 9(15), 2555-2559.
- [22] X Li; X Lu; Y Meng; C Yao; Z. Chen. J. Alloy. Compd., 2013, 562(0), 56-63.
- [23] H Chang; J Li; J Yuan; L Chen; Y Dai; H Arandiyan; J Xu; J Hao. Catal. Today, 2013, 201, 139-144.
- [24] X Zhao; Y Meng; X Lu; X Li. J. Sol-Gel Sci. Technol., 2013, 66(1), 22-30.
- [25] S Deng; H Li; Y Zhang. Chinese J. Inorg. Chem., 2003, 19(08), 825-830.
- [26] Z Jing. Mater. Lett., 2006, 60 (17-18), 2217-2221.
- [27] D Amalric-Popescu; F Bozon-Verduraz. Catal. Today, 2001, 70(1-3), 139-154.
- [28] Y Zeng; Z Liu; H Liu. Chinese J. Catal., 2008, 29(03), 253-258.
- [29] W Wang; D Li; Z Wang; H Cui; G Xue. Chinese J. Inorg. Chem., 2002, 18(08), 823-826.
- [30] B Zhang; Y Tian; J Zhang; W Cai. *Mater. Lett.*, **2011**, 65(8), 1204-1206.
- [31] L Bouna; B Rhouta; M Amjoud; F Maury; M Lafont; A Jada; F Senocq; L Daoudi. Appl. Clay. Sci., 2011, 52(3), 301-311.
- [32] L Zhang; F Lv; W Zhang; R Li; H Zhong; Y Zhao; Y Zhang; X Wang. J. Hazard Mater., 2011, 52 (3), 301-311.
- [33] Y Shi; S Chen; H Sun; Y Shu; X Quan. Catal. Commun., 2013, 42, 10-13.
- [34] J Yu; F Guo; Y Wang; J Zhu; Y Liu; F Shu; S Gao; G Xu. Appl. Catal. B-Environ., 2010, 95(1-2), 160-168.
- [35] J Li; Y Zhu; R Ke; J Hao. Appl. Catal. B-Environ., 2008, 80(3-4), 202-213.
- [36] H He; J Wang; Q Feng; Y Yu; K Yoshida. Appl. Catal. B-Environ., 2003, 46(2), 365-370.
- [37] B Jiang; Z Li; S Lee. Chem. Eng. J., 2013, 225, 52-58.
- [38] G Ramis; G Busca; F Bregani; P Forzatti. Appl. Catal., 1990, 64(0), 259-278.
- [39] P Forzatti. Appl. Catal. A-Gen., 2001, 222(1-2), 221-236.
- [40] F Liu; K Asakura; H He; W Shan; X Shi; C Zhang. Appl. Catal. B-Environ., 2001, 222(1-2), 221-236.
- [41] S Yang; Y Guo; H Chang; L Ma; Y Peng; Z Qu; N Yan; C Wang; J Li. *Appl. Catal. B-Environ.*, **2013**, 136-137, 19-28.