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ABSTRACT 
 
Scattered data fitting is a big issue in numerical analysis. In many applications, some of the data are contaminated 
by noise and some are not. It is not appropriate to interpolate the noisy data, and the traditional least squares 
method may lose accuracy at the points which are not contaminated. In this paper, we present least squares with 
interpolation method to solve this problem. The existence and uniqueness of its solution are proved and an error 
bound is derived. Some numerical examples are also presented to demonstrate the effectiveness of our method. 
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INTRODUCTION 
 

Scattered data fitting is a big issue in numerical analysis. There are lots of literatures about this topic (e.g.,[6, 8, 10, 
11, 16]). If the scattered data are contaminated by noise, we can use least squares method (e.g., [13, 9,15]) or other 
methods (e.g., [1, 2, 3, 12, 17]). If the scattered data are not contaminated, we can use interpolation methods (e.g., [4, 
5, 7, 13, 14]). But in some circumstances, some of the data are contaminated, and others are not. It is not appropriate 
to interpolate the noisy data, and traditional least squares method may lose accuracy at the points which are not 
contaminated. To overcome this difficulty, we propose a new approach contained with two methods called least 
squares with interpolation. 
 

Let 1{ ( , )} M N
i i i iV v x y +

== =
 be a set of points lying in a domain 

2Ω ⊂ R  with polygonal boundary and 

{ , 1, , }if i M N= +L
 be a corresponding set of real numbers. The data are assumed to be contaminated by noise  

( , )i i i if f x y= + ò
 

 

where f  belongs to the standard Sobolev space 
2( )W∞ Ω

 and iò  are noisy terms. In some circumstances, the 

data can be divided into two groups by the size of noise. Suppose 
0 0 0 0

1{ , , } M
i i i iD x y f ==

 be a group of data with 

0i =ò
 and 

1 1 1 1
1{ , , } N

i i i iD x y f ==
 be another group of data with 

0i ≠ò
. We first construct a surface  which 

minimize 

2 0 0 0 2 1 1 1 2

1 1 1

( ) : | ( ) | | ( , ) | | ( , ) |
M N M N

L L i i L i i i L i i i
i i i

L s s v f s x y f s x y f
+

= = =

= − = − + −∑ ∑ ∑
    （1.1） 

 

where 
( )r

d LS 
 is a space of splines of degree d  and smoothness r  defined in next section. Next we modify 

some of the data in two groups. Let 
0 0 0 0

1{ , , } M
i i i iD x y z ==

 and 
1 1 1 1

1{ , , } N
i i i iD x y z ==

 be two new groups where 
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0 0 0 0: ( , )i i L i iz f s x y= −
 and 

1 : 0iz =
. Define a set of all spline in 

( )r
d IS 

 that interpolate the data at the points 

of V  by 
0 0 0 1 1 1: { ( ) : ( , ) , ( , ) , 1, , , 1, , }.r

f d I i i i j j jI s S s x y z s x y z i M j N= ∈ = = = … = …
  （1.2） 

 

where I  is a new triangulation of data locations. After that, we construct a spline function 
( )r

I d Is S∈ 
 such 

that 

( ) min{ ( ) : }I fE s E s s I= ∈
                   （1.3） 
 

where ( )E s  is a energy function defined by 
2 2 2( ) : [ ].2

I

xx xyT y
T

yE ss s s
∈∆

+ += ∑ ∫
 

Finally, we get a new spline function by 

.F L Is s s= +
                         （1.4） 

From the above, we can see that it need to construct two splines with two triangulations in our approach. One is Ls
 

for least squares fit, another one is Is
 for data interpolation. We construct the spline Ls

 base on triangulation L  

and the Is
 base on I . 

 
In this paper, we derive the following error bound for this approach, 

2 2
, 1 2 2, ,(2 | | | | ) | | ,F L If s C C f∞ Ω ∞ Ω− ≤ + ‖ ‖

            （1.5） 
 

where 2, ,| |f ∞ Ω  denotes the maximum norm of the second order derivatives of f  over Ω  and ,f ∞ Ω‖‖

 is the 

standard infinity norm of f  over Ω . Here 
| |L  and 

| |I  are the maximum of the diameters of the triangles in 

L  and I  and all the constants in the error bound will be introduced in following sections. 
 
The paper is organized as follows. In Section 2 we review some well-known Bernstein-Bezier notation. The result 
on error bounds of this approach is derived in Section 3 together with a discussion on existence and uniqueness. In 
Section 4 we present some numerical examples for our method. 
 
PRELIMINARIES 

Given a triangulation   and integers 0 r d≤ < , we write 
 

( ) : { ( ) : | , for all }r r
d T dS s C s P T= ∈ Ω ∈ ∈ 

 
 

for the usual space of splines of degree d  and smoothness r , where dP
 is the 

2

2

d + 
 
   dimensional space of 

bivariate polynomials of degree d . Throughout the paper we shall make extensive use of the well-known 

Bernstein-Bezier representation of splines. For each triangle 1 2 3, ,T v v v= 〈 〉
 in   with vertices 1 2 3, , ,v v v

 the 

corresponding polynomial piece 
|Ts

 is written in the form  
 

| ,T T
T ijk ijk

i j k d

s c B
+ + =

= ∑
 

 

where 
T
ijkB

 are the Bernstein-Bezier polynomials of degree d  associated with T . In particular, if 1 2 3( , , )λ λ λ
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are the barycentric coordinates of any point 
2u∈ R  relative to the triangle T , then 

 

1 2 3

!
( ) : , .

! ! !
T i j k
ijk

d
B u i j k d

i j k
λ λ λ= + + =

 
 

As usual, we associate the Bernstein-Bezier coefficients 
{ }T

ijk i j k dc + + =  with the domain points 

1 2 3{ : ( ) / } .T
ijk i j k div jv kv dξ + + == + +

 
 

Definition 1.  Let β < ∞ . A triangulation   is said to be β -quasi-uniform provided that 
| | ,βρ≤




 where 

ρ
  is the minimum of the radii of the incircles of triangles of  . 

 
We say the data locations are evenly distributed over each triangle of  , if there are enough data points for every 
triangle such that 
 

2 1/2
, ( ( ) )

i

T i
v T

P C P v∞
∈

≤ ∑‖‖

 
 

for any polynomial P  and some constant C . 
 

ERROR ANALYSIS 
In this section, we mainly discuss the error bounds for the spline function created by this approach. First, we show 

the existence and uniqueness of this spline. Note that Ls
 is a solution of least squares method and Is

 is a solution 
of minimal energy interpolation. 

 

Theorem 3.1 (cf. [15] ) Suppose all the data locations are evenly distributed over each triangle of L


. Then there 

exists a unique 
( )r

L d Ls S∈ 
 satisfying (1.1). 

 

Theorem 3.2 (cf. [7] ) There exists a unique solution 
( )r

I d Is S∈ 
 which satisfies (1.3). 

 

Note that F L Is s s= +
, we can get 

Theorem 3.3 There exists a unique solution F
s

 of this approach. 

 
Next we show the error bound for the spline function. Recall from [10], we can get 

 
2

, 1 2, ,| | | | .L Lf s C f∞ Ω ∞ Ω− ≤ ‖ ‖

                      (3.1) 

 

Theorem 3.4 Suppose that two triangulations L


 and I  are β -quasi-uniform and 
2( )f W∞∈ Ω

. Then there 

exists two constants 1C
 and 2C

 depending on d , β , C  and the smallest angel in each triangulation such 

that the spline Fs
 defined in (1.4) satisfies 

2 2
, 1 2 2, ,(2 | | | ) | | .F L If s C C f∞ Ω ∞ Ω− ≤ + ‖ ‖

 
 

Proof: Since F L Is s s= +
, we can get 
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, , , , .F L I L If s f s s f s s∞ Ω ∞ Ω ∞ Ω ∞ Ω− = − − ≤ − +‖ ‖ ‖ ‖ ‖ ‖ ‖ ‖

         (3.2) 

 

Note that Is
 is a minimal energy spline that interpolate the data 

0D  and 
1D . We can assume that the data 

comes from a function 
2( )z W∞∈ Ω

. Recall from [11], we can get 

 
2

, 2 2, ,| | | | .I Is z C f∞ Ω ∞ Ω− ≤ ‖ ‖

                      (3.3) 

 

Since 
0 0 0 0: ( , )i i L i iz f s x y= −

 and 
1 : 0iz =

, we have 

, , .Lz f s∞ Ω ∞ Ω≤ −‖‖ ‖ ‖

                            (3.4) 

 
Then by (3.3) and (3.4), we have 

2
, , , , 2 2, , ,| | | | .I I I I Ls s z z s z z C f f s∞ Ω ∞ Ω ∞ Ω ∞ Ω ∞ Ω ∞ Ω= − + ≤ − + ≤ + −‖ ‖ ‖ ‖ ‖ ‖ ‖‖ ‖ ‖

  (3.5) 

 
Therefore, by substituting (3.1) and (3.5) into (3.2), we have 

2 2
, 1 2 2, ,(2 | | | | ) | | .F L If s C C f∞ Ω ∞ Ω− ≤ + ‖ ‖

 
 
This completes the proof.  
 
NUMERICAL EXAMPLE 
In this section, we present a numerical example to demonstrate the performance of our approach. 
 

Example 4.1 Let 
0 0 0 0 0{( , , ( , ))}i i i iD x y f x y=

 be a scattered data set which is marked with a triangle without 

contaminated and 
1 1 1 1 1{( , , ( , ) )}i i i iD x y f x y= + ò

 be a contaminated scattered data set which is marked with a 

circle in Fig. 1, where ( , )f x y  is a test function and iò  is a random number between 0.01−  to 0.01. We use 
the following test functions 
 

4 4
1( , ) 2 ,5f x y x y= +

 

2( , ) sin(2( )),f x y x y= −
 

2 2
3( , ) 0.75exp( 0.25(9 2) 0.25(9 2) )f x y x y= − − − −

 

     
20.75exp( (9 1) / 49 (9 1) /10)x y+ − + − +  

      
2 20.5exp( 0.25(9 7) 0.25(9 3) )x y+ − − − −  

2 20.2exp( (9 4) (9 7) )x y− − − − − . 
 

to evaluate the scattered data set. First we use the spline space 
1
5( )LS 

 to find the the fitting surfaces L
s

, where 

L  is the triangulation given in Fig. 1. Next we triangulate all data locations to get a new triangulation I  as 

shown in Fig. 2. We modify some of the data in two groups. Let 
0 0 0 0

1{ , , } M
i i i iD x y z ==

 and 
1 1 1 1

1{ , , } N
i i i iD x y z ==

 

be two new groups where 
0 0 0 0 0: ( , ) ( , )i i i L i iz f x y s x y= −

 and 
1 : 0iz =

. Then we construct a minimal energy 

interpolatory spline 
1
5( )I Is S∈ 

. Finally, we can get our solution by F L Is s s= +
. Moreover, we compared the 

maximum errors against the exact function between our approach the traditional least squares method and weighted 
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least squares method (cf. [15]) in Table 1. Here in weighted least squares method, the weights are set to be 
1iω =

 

and 
0.01iω =

 for the exact data and contaminated data, respectively. The maximum errors are measured using 

101 101×  equally-spaced points over [0,1] [0,1]× .  
 

Table 1: Approximation errors. 
 

Test functions Our method Traditional l.s. method Weighted l.s. method 

1( , )f x y
 

0.0342 0.4383 0.0965 

2( , )f x y
 

0.0474 0.4778 0.0407 

3( , )f x y
 

0.0441 0.2988 0.0216 

 
Discussion: From Table 1, we can see that the error bounds of our approach is better than that of the traditional least 
squares method. And compare to weighted least squares method, it is hard to say which method is better. But there is 
a one big difference between our method and weighted least squares method. That is the surface created by our 
method can pass through the exact data. 
 

 

Figure 1. Scattered data and triangulation L  
 

Below, we present an example to illustrate an application of our method. 
 
Example 4.2 We consider the shape design of a car. For example, the hood (a part of a car). A set of data are given 
in Fig. 3 which are used to construct the hood. The data can be divided into two groups. One is marked with triangle 
which means the shape must go through the data (For instance, the edge of the hood). That means we need to 
interpolate these data. The other is marked with cycle which need to be least squares fit. We first use the spline space 

1
5( )LS 

 to find the the fitting surfaces L
s

, where L  is the triangulation given in Fig. 3. Next we modify two 

groups of data from our method, then we construct a minimal energy interpolatory spline 
1
5( )I Is S∈ 

, where I  

is a new triangulation of all data locations given in Fig. 4. Finally, we draw the shape of the hood F L Is s s= +
 as 

shown in Fig. 5. 
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Figure 2. Triangulation I  of data locations 
 

 

Figure 3. Data locations and triangulation L  
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Figure 4. Triangulation I  of data locations 

 
Figure 5. The shape of the hood 
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