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ABSTRACT

Scattered data fitting is a big issue in numeriaahlysis. In many applications, some of the dam@mntaminated
by noise and some are not. It is not appropriaténterpolate the noisy data, and the traditionahdé squares
method may lose accuracy at the points which atecootaminated. In this paper, we present leastsgg with
interpolation method to solve this problem. Thestexice and uniqueness of its solution are provetiamerror
bound is derived. Some numerical examples aremkssented to demonstrate the effectiveness of etirau.
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INTRODUCTION

Scattered data fitting is a big issue in numeréslysis. There are lots of literatures about titysc (e.g.,[6, 8, 10,
11, 16]). If the scattered data are contaminateddise, we can use least squares method (e.g.9[13]) or other
methods (e.g., [1, 2, 3, 12, 17]). If the scattedath are not contaminated, we can use interpalatigthods (e.g., [4,
5, 7, 13, 14]). But in some circumstances, sonth@flata are contaminated, and others are ngtnltitiappropriate
to interpolate the noisy data, and traditional tesigiares method may lose accuracy at the pointshvdre not
contaminated. To overcome this difficulty, we prepaa new approach contained with two methods cédlast
squares with interpolation.

—_ —_ M +N
Let V={v=0% s be a set of points lying in a domai® I R? with polygonal boundary and
p ying polyg y
{f,i=1,

. +
M +N} be a corresponding set of real numbers. The datassumed to be contaminated by noise

fi=f(x,%)+0
f W2(Q)

belongs to the standard Sobolev space and 9 are noisy terms. In some circumstances, the

eDO :{)go, yi0’ t(}iM

=1 be a group of data with

where
data can be divided into two groups by the sizeaise. Suppos

q=0 and b* :{)gl’ y'l’ t]}‘Nﬂ be another group of data witg * O. We first construct a surface  which
minimize
M+N M N )
L(SL):ZlSL(Y)_ “2: |§(P%’i9)_ if’|2+z Ls(i}('iy)_ifr
i=1 i=1 i=1

(1.D

r
where Sy (DL) is a space of splines of degr& and smoothness defined in next section. Next we modify

M [_)l:{xil yl . N

N0 — 0 0
some of the data in two groups. Lg? _{Xi R Z(}izl and i=1 pe two new groups where
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0. 0_ — r
4 - f' % ( )'P’ }’P) and Zl ’ O. Define a set of all spline inSd (D') that interpolate the data at the points

of V by

I ={sO0S(0): $ X V=2 6x ,y=,7z41...., MF1.., N

(1.2

where Hy is a new triangulation of data locations. Afteaitthve construct a spline functioﬁ“ O % (D' ) such

that
E(s)=min{ & §: €1} s
where E(9) is a energy function defined by
)= [ [§.+2§+s))
TOA,
Finally, we get a new spline function by
$=37 % (1.4)

From the above, we can see that it need to comstwocsplines with two triangulations in our appcbaOne is S
i . . . . [
for least squares fit, another onelss for data interpolation. We construct the sphr?ie base on triangulation -

and the S base onD' .

In this paper, we derive the following error bodadthis approach,

||f_s|:||oo’QS(2C1DLF+Qm|f)lfJ,’”Q (1.5

f I llg .

f : .
where | E'“’ 2 denotes the maximum norm of the second order atiras of over Q and s the

f

standard infinity norm of ©  over Q  Here l]'-l and D' | are the maximum of the diameters of the triangles

0 0

L and ' and all the constants in the error bound willfteoiduced in following sections.

The paper is organized as follows. In Section Zeview some well-known Bernstein-Bezier notatiohe Tesult
on error bounds of this approach is derived ini8e@ together with a discussion on existence anqueness. In
Section 4 we present some numerical examples fomethod.

PRELIMINARIES

Given a triangulation” and integersOS r<d , We write

S(O):={s0C(Q: $0 ploral T}

d+2
. o P 2 : .
for the usual space of splines of degr€e and smoothnesd , where is the dimensional space of

bivariate polynomials of degreg. Throughout the paper we shall make extensive afs¢he well-known

T=(,\%, W Vi, Vy, Vg,

Bernstein-Bezier representation of splines. Fohdaangle in U with vertices "%’ the

corresponding polynomial piecglr is written in the form
—_ J pl
Sh_ Z ij Eﬂk |
i+j+k=d

-
Bljk

where are the Bernstein-Bezier polynomials of deglge associated withT . In particular, if (/]1’/]2’/]3)

303



Tianhe Zhou J. Chem. Pharm. Res,, 2014, 6(7):302-309

2
are the barycentric coordinates of any poh'wp R relative to the triangIeT , then

| o
B, (u) ::i,f'—,'wA;A;A;:, i+j+k=d.

.
As usual, we associate the Bernstein-Bezier caeffis { "k} i+] =

{Gc=(ivi+ v+ k) [ Gy

with the domain points

Definition 1. Let B <o . Atriangulation U is said to be'g—quasi—uniform provided thapIS 'B'OE " where

P is the minimum of the radii of the incircles afimgles of L .

We say the data locations are evenly distributest each triangle of !, if there are enough data points for every
triangle such that

1Pl < (3 P(y)?)*

vOT

for any polynomial P and some constang .

ERRORANALYSIS
In this section, we mainly discuss the error boundshe spline function created by this approdgtst, we show

the existence and uniqueness of this spline. Nate %— is a solution of least squares method asrid is a solution
of minimal energy interpolation.

Theorem 3.1 (cf. [15] ) Suppose all the data locations are Bvdistributed over each triangle OQ'-. Then there

exists a uniqueSL . % (DL) satisfying (1.1).

Theorem 3.2 (cf. [7] ) There exists a unique squtioﬁ O % (D' ) which satisfies (1.3).
$S=3+8%

Note that , We can get

Theorem 3.3 There exists a unique solutioﬁF of this approach.

Next we show the error bound for the spline funtti®ecall from [10], we can get
- <
|| f SLHOO,Q - (:.L I]lel f L,OOQ ' (31)

2
f OW, (Q) . Then there

Theorem 3.4 Suppose that two triangulationDs'- and y are 'B-quasi-uniform and
exists two constantsCl and C2 depending ond , 'B C and the smallest angel in each triangulation such

that the splineSF defined in (1.4) satisfies

If-sll,a<CIEHCHE)If g

=s +
Proof: Since =% $, we can get
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If=sl,q=l f-5-slo<l f- sl o+l &g .

. . . . N0 N1
Note that S is a minimal energy spline that interpolate thead®~ and D”. We can assume that the data

2
comes from a functionZ[j W (Q) . Recall from [11], we can get

I's=2lo< GHFl fhag - (3.3)

Since ;0 = fi0_§()'g' }P) and Z'l:zo,we have

12l o<l f-5l, 4 (3.4)

Then by (3.3) and (3.4), we have

Islg=ls-z hosl 5= lko#l lgos GIFl Lol fiho g

Therefore, by substituting (3.1) and (3.5) int®2§3we have

If-sllo<@GUF+CIT)If g

This completes the proof.

NUMERICAL EXAMPLE
In this section, we present a numerical examphtietoonstrate the performance of our approach.

0 _ 0,0 0

Example 4.1 Let D _{()ﬁ’ ¥ f( X yo))} be a scattered data sehich is marked with a triangle without
1 = .l .1 + X

contaminated andD {()ﬂ’ Yo f( )'(l’ yl) O)} be a contaminatedcattered data set which is marked with a

circle in Fig. 1, where F(xy) is a test function ancﬁ is a random number betweeﬁo-01 to 0-01. We use
the following test functions

f(xy)=2X+5Y,
f,(X, y) =sin(2(x-y)),

f,(x, y) =0.75expt 0.25(8- 2y 0.25@ 2)
+0.75exp€ (X+ 1) /149 (9+ 1)/1(
+0.5expE 0.25(8—- 7)- 0.25(@ 3)
-0.2expt (X- 4)- (Y- 1)

to evaluate the scattered data set. First we segline spaceSé(DL) to find the the fitting surfacess-, where
e is the triangulation given in Fig. 1. Next we irjmlate all data locations to get a new trianguhatlm' as
shown in Fig. 2. We modify some of the data in gvoups. Let D° :{)ﬂo’ yio’ Z(}i’\il and D' :{)gl’ yil’ L iN=1
be two new groups whert%o = f(xo' )f))— §( ??’ y) and Zl ::O. Then we construct a minimal energy

. . . . =s +
interpolatory spllneS . %(l], ) . Finally, we can get our solution b)%F g $. Moreover, we compared the
maximum errors against the exact function betwaerapproach the traditional least squares methddaaighted
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least squares method (cf. [15]) in Table 1. Herevétighted least squares method, the weights are st o =1
and « =0.01 for the exact data and contaminated data, resdetiThe maximum errors are measured using

101x 101 equally-spaced points ove[p’l]x[o’l].

Table 1: Approximation errors.

Test functions| Our methogd  Traditional |.s. methiod eighited I.s. method
f.(xy) | 0.0342 | 0.438: 0.0965
f,(x,y) | 0.0474 | 0.477¢ 0.0407
fs(x,y) | 0.0441 | 0.298¢ 0.021¢€

Discussion: From Table 1, we can see that the error boundsioépproach is better than that of the traditideast
squares method. And compare to weighted least eguaethod, it is hard to say which method is heet there is
a one big difference between our method and weiglgast squares method. That is the surface crdstesr
method can pass through the exact data.

e
i r
* g
P o S
S A
0 iy .
A © A
C o u
-
A g
0 A
7 AT N
P O A
T
o A
& o A
sl

b

Figure 1. Scattered data and triangulation

Below, we present an example to illustrate an appbn of our method.

Example 4.2 We consider the shape design of a car. For exanti@ehood (a part of a car). A set of data arergive
in Fig. 3 which are used to construct the hood. @@ can be divided into two groups. One is markigd triangle
which means the shape must go through the dataifStance, the edge of the hood). That means wd twee
interpolate these data. The other is marked withecyhich need to be least squares fit. We firstthe spline space

1
SS(DL) to find the the fitting surfacesSL, where He is the triangulation given in Fig. 3. Next we miydiwo
groups of data from our method, then we construniramal energy interpolatory splineS O S(D' ) , where Hy

=s +
is a new triangulation of all data locations giwerig. 4. Finally, we draw the shape of the hogﬁ SI as
shown in Fig. 5.
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Figure 2. Triangulation

DL

Figure 3. Data locations and triangulation
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}
Figure4. Triangulation I of data locations

100

Figure5. The shape of the hood
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