Performance mechanism of learning capability based on dynamic capability framework-the mediating role of operational capabilities

Gao Tiantian* and Tian Yezhuang

School of Management, Harbin Institute of Technology (Affiliated to HIT Science Park 2H, Harbin, China)

ABSTRACT

This paper propose a new vision to distinguish dynamic capabilities from operational capabilities and show how they contribute to enterprise performance. Data from International Manufacturing Strategy Survey in 2009 is used to verify the mediating model by hierarchical regression analysis. The results integrate insights from previous research in dynamic capability framework and operational management into a generalization and extension of the performance mechanism in manufacturing enterprises.

Keywords: Dynamic capability, Operational capability, Enterprise performance.

INTRODUCTION

Organizations’ survival environment has changed dramatically due to the globalization and technological change. This forced enterprises to continuously adapt, update, resets the internal resources and capabilities to cope with the increasingly complex and unpredictable market. Accordingly, dynamic capabilities framework has been proposed that firm’s operational capabilities are directly involved in converting inputs into outputs and its dynamic capabilities change those operational capabilities to help the firm to adapt to changes in the external environment[1].

Although dynamic and operational capabilities are assumed to be separate constructs, current literature has not fully distinguished between them. First, without such clarification it is likely that one scholar will classify a particular capability as operational while another will classify that same capability as dynamic. Wu, Melnyk, & Flynn, for example, define product development capabilities developed within a firm’s operations function as operational[2], while Helfat and Winter categorize these same capabilities as dynamic[3]. Second, we need this distinction to understand the mechanism(s) by which dynamic capabilities change operational capabilities and ultimately firm performance. This paper provide a way to understand the distinction between dynamic and operational capabilities, and investigate empirically whether a given dynamic capability influences firm performance by updating (renewing) a single operational capability or a number of them.

LITERATURE REVIEW AND HYPOTHESIS

Distinction between dynamic capability and operational capability

Teece et al. theorize that firms generally have two sets of capabilities. One set of capabilities termed operational or ordinary capabilities are directed toward converting inputs into outputs, while another set termed dynamic capabilities are directed toward changing other firm capabilities[4]. Zollo and Winter attempt to make a distinction between these two capabilities by equating dynamic capabilities with change and operational capabilities are static (“zero-order”)abilities in the sense that they cannot change unless they are acted upon by dynamic capabilities[5]. However, since empirical studies show that operational capabilities can in fact change on their own and also change other firm capabilities. Ferdows and DeMeyer shows that a firm’s quality capability, which is considered an operational capability, can influence other operational capabilities such as a firm’s ability to produce goods at a low cost, or vice versa[6].
If we consider the dynamic and static systems concepts developed by Knight and Klein, we might be able to apply these concepts as we develop a new framework that distinguishes dynamic capabilities from operational ones[7, 8]. Systems that change in a predictable manner should be considered static or zero-order. Applying this systems concept to the field of dynamic capabilities, I distinguish between operational and dynamic capabilities by determining whether or not the outcome resulting from a change produced by a capability is predictable. If an operational capability induces change in a different firm capability, then the outcome of that change cannot be estimated a priori using initial conditions. If a dynamic capability induces change in a different firm capability, then the outcome of that change cannot be estimated a priori using initial conditions.

According to the dynamic capability framework, a firm’s learning capabilities are considered dynamic capabilities[5] because knowledge created by engaging in learning activities can be used to renew a firm’s operational capabilities[9]. It is difficult to estimate outcomes resulting from the creation of new capabilities and resources because the creation of new capabilities entails high levels of uncertainty[10]. Literature in the operations management field has currently classified operational capabilities into three types: quality, efficiency, flexibility. The changes inducing by these capabilities are certain and can be estimated[11].

Dynamic capability, operational capability and enterprise performance

Dynamic capabilities can impact enterprise performance in a variety of ways: First, the dynamic capabilities create market value by matching the resource base in changing environments[12]; Second, the dynamic capabilities support the mechanism of resource mining and capacities building [13]; Third, the dynamic capabilities enhance performance by promoting timeliness, speed and efficiency of organizational response to the market environment [14].

Learning capability as a dynamic capability, of which newly created knowledge can lead to the development of new capabilities and resources that help a firm gain a competitive advantage. Learning from customers and suppliers can achieve performance improvement through continuous absorption and transformation of external information and resources[5].

H1: Learning capability will have a positive relationship on enterprise performance.

The quality capability influences a firm’s overall performance and is defined as a firm’s ability to meet customers’ requirements and expectations[15]: Operations managers have developed quality management tools such as quality function deployment (QFD) to learn from customers and to track changing customer requirements over time. Through the application of QFD, a firm can learn about the features/attributes customers want and value in a product and use that information to design products that conform to customers’ requirements and expectations[16]. Customer knowledge that is accumulated incrementally helps a firm to modify and/or create new products to meet customers’ expectations. Incremental knowledge acquired by engaging in learning activities can help a firm to design, through many iterative processes, products that meet customers’ requirements and expectations and eventually influence a firm’s overall performance.

H2a: Learning capability will have a positive relationship on quality capability.

H2b: Quality capability mediates the relationship between learning capability and enterprise performance.

A firm’s efficiency capability influences firm performance and is defined as a firm’s ability to produce goods and provide services at the lowest possible cost[17]. Tacit customer and supplier knowledge that can be used to modify a firm’s existing processes and create new one can be acquired efficiently by firms by involving customers in the product design and development process, encouraging them to share market information and developing business plans together[18]. Knowledge acquired by engaging in learning activities renews a firm’s efficiency capability, which in turn influences overall firm performance.

H3a: Learning capability will have a positive relationship on efficiency capability.

H3b: Efficiency capability mediates the relationship between learning capability and enterprise performance.

A firm that can switch seamlessly from performing one interdependent task to another is said to have operational flexibility[19]. Knowledge can renew a firm’s flexibility capability when the firm understands customers and suppliers’ expressed and latent needs. A firm with superior information about customers’ expressed and latent needs has the ability to anticipate these needs more accurately than its competitors with inferior information[20]. Having superior knowledge enables a firm to develop production methods required to produce products that customers may want in the future before the actual demand for them occurs. A firm that has a variety of production methods in place to produce multiple products can move efficiently from producing one product to another using the same labor and equipment to meet changing customer demands.
H4a: Learning capability will have a positive relationship on flexibility capability.
H4b: Flexibility capability mediates the relationship between learning capability and enterprise performance.

DATA ANALYSIS AND EMPIRICAL RESULTS

Data source and variables measurement

The data comes from the fifth edition of the International Manufacturing Strategy Survey (IMSS-V) in 2009. There are 506 samples of eight industries in 20 countries after removing the missing values. Enterprise performance is measured by return on sales (ROS) and return on investment (ROI). Learning capability measures the extent to which a firm learns about changing market demands from its customers, suppliers and works with them to obtain feedback about product offerings. Quality capability is measured by what extent a firm produces reliable and conformable products. Efficiency capability is constructed by the extent to which a firm can produce products at low costs. Flexibility capability is constructed by the extent to which a firm can switch from producing one product line to another and the extent to which it can change the rate of production.

Reliability and validity

This paper uses SPSS 17.0 to test reliability. Cronbach’s Alpha coefficients of all variables are greater than 0.6, showing good reliability. Confirmatory factor analysis shows fitting index as followed: chi square/df = 1.92, RMSEA = 0.069, CFI = 0.93, GFI = 0.85, AGFI = 0.901. Model fitting results are good, and at the same time the factor loading coefficient of each variable show good convergent validity. The square root of average extraction variance (AVE) of each variable is greater than the correlation coefficient of this variable with other variables, which has better discriminant validity. Reliability, validity of test results and the correlation matrix are shown in Table-1.

<table>
<thead>
<tr>
<th>Variables</th>
<th>Cronbach’s α</th>
<th>Mean</th>
<th>s.d.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Learning capability</td>
<td>.722</td>
<td>3.19</td>
<td>.904</td>
<td>.778</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Quality Capability</td>
<td>.816</td>
<td>3.88</td>
<td>.907</td>
<td>.206**</td>
<td>.767</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Efficiency Capability</td>
<td>.875</td>
<td>3.25</td>
<td>.919</td>
<td>.193**</td>
<td>.215**</td>
<td>.834</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Flexibility Capability</td>
<td>.819</td>
<td>3.72</td>
<td>.882</td>
<td>.185**</td>
<td>.107*</td>
<td>.278**</td>
<td>.814</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 Enterprise Performance</td>
<td>.883</td>
<td>3.21</td>
<td>.771</td>
<td>.209**</td>
<td>.209*</td>
<td>.216**</td>
<td>.269**</td>
<td>.846</td>
<td></td>
</tr>
</tbody>
</table>

N=506, **p<0.001, *p<0.01, numbers on the diagonal show square roots of AVE.

Empirical results

This paper takes operational capabilities as mediating variables and examine the relationships between dynamic capabilities in manufacturing enterprise and performance. Results are shown in Table-2-4.

Table -2Mediating test of Quality Capability between Learning capability and Enterprise performance

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1 Quality capability</th>
<th>Model 2 Enterprise performance</th>
<th>Model 3 Enterprise performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning capability</td>
<td>.205**</td>
<td>.188**</td>
<td>.202**</td>
</tr>
<tr>
<td>Quality capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.75**</td>
<td>2.02**</td>
<td>2.46**</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>.191</td>
<td>.083</td>
<td>.096</td>
</tr>
<tr>
<td>ΔR²</td>
<td>.192**</td>
<td>.167**</td>
<td>.024**</td>
</tr>
</tbody>
</table>

N=506, **p<0.001, *p<0.01, standardized coefficients are reported.

Table -3Mediating test of efficiency Capability between Learning capability and Enterprise performance

<table>
<thead>
<tr>
<th>Variables</th>
<th>Model 1 Efficiency capability</th>
<th>Model 2 Enterprise performance</th>
<th>Model 3 Enterprise performance</th>
</tr>
</thead>
<tbody>
<tr>
<td>Learning capability</td>
<td>.192**</td>
<td>.188**</td>
<td>.078</td>
</tr>
<tr>
<td>Efficiency capability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>2.03**</td>
<td>2.02**</td>
<td>2.48**</td>
</tr>
<tr>
<td>Adjusted R²</td>
<td>.189</td>
<td>.083</td>
<td>.076</td>
</tr>
<tr>
<td>ΔR²</td>
<td>.190**</td>
<td>.167**</td>
<td>.017**</td>
</tr>
</tbody>
</table>

N=506, **p<0.001, *p<0.01, standardized coefficients are reported.

In model 2 of Table 2-4, learning capability has a significantly positive relationship on enterprise performance (P<0.001), providing strong evidence for the hypothesis 1. In model 1 of Table 2-4, learning capability has a significantly positive relationship on (P<0.001) quality capability, efficiency capability and flexibility capability. In model 3 of Table 2-4, the relationship of learning capability and enterprise performance is not significant when
entering the operational capabilities. This conclusion shows the completely mediating role of operational capabilities. The hypothesis 2-4 are verified.

| Table - 4 Mediation test of Flexibility capability between Learning capability and Enterprise performance |
|---|---|---|
| Variables | Model 1 Flexibility capability | Model 2 Enterprise performance | Model 3 Enterprise performance |
| Learning capability | .187** | .188** | .243** |
| Flexibility capability | | | |
| F | 1.99** | 2.02** | 2.17** |
| Adjusted R² | .146 | .083 | .066 |
| ΔR² | .133** | .167** | .015* |

N=506, **p<0.001, * p<0.01, standardized coefficients are reported.

DISCUSSION AND CONCLUSION

Although dynamic capability literature posits that dynamic capabilities influence firm performance through operational capabilities, prior studies examine the direct relationship between dynamic capabilities and firm performance rather than a relationship mediated by operational capabilities. Therefore, it is unclear from these studies if operational capabilities actually mediate the relationship between dynamic capabilities and firm performance and whether in fact dynamic capabilities consistent with the definition were established. It is also unclear from these studies whether dynamic capabilities influence firm performance by renewing a single operational capability or several of them.

This paper finds that dynamic capability may renew several operational capabilities, and it is appropriate for influencing firm performance through them. When a firm’s dynamic capability-learning capability influences firm performance through the renewal of operational capability such as quality, efficiency, and flexibility capability, the firm improves its performance. It is essential for a firm to understand how its dynamic capabilities are linked to its operational capabilities. A lack of such knowledge could prompt firm managers to invest in a dynamic capability that minimally influences firm performance. Danneels shows that Smith Corona's performance did not improve even after the firm invested substantially to develop a new dynamic capability[21]. This study enhances our understanding of dynamic capabilities by distinguishing them from operational capabilities and by showing how they contribute to firm performance through the renewal of operational capabilities.

Acknowledgement

This work is partially supported by Professor Tian Yezhuang. We also gratefully acknowledge the helpful comments and suggestions of the reviewers, which have improved the presentation.

REFERENCES