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ABSTRACT

Because network traffic is complex and the existing prediction models have various limitations, a new network
traffic prediction model based on wavelet transform and optimized support vector machine(ChOSVM) is proposed.
Firstly, the network traffic is decomposed to the scale coefficients and wavelet coefficients by non-decimated
wavelet transform based on suitable wavelet base and decomposition level. Then they are sent individually into
different SYM with suitable kernel function for prediction. The parameters of SYM are selected by chaos particle
swarm optimization. Finally predictions are combined into the final result by wavelet reconstruction. Experiments
on network traffic of different time granularity show that compared with other network traffic prediction models,
ChOSVM has better performance.
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INTRODUCTION

With the rapid development of the network commutiicatechnology, the network is carrying more andren
application service[1-5]. It requires higher qualdf network service, traffic control and networlanagement.
Network traffic analysis and prediction have sigraht meanings for large-scale network capacitynipiag,
network equipment design, network resource manageams user behavior regulation. Traffic predictwith high
quality is getting more and more important[6][7].

Indeed, Traffic modeling is fundamental to the rmtwperformance evaluation and the design of néwontrol
scheme that is crucial for the success of highgpetworks [8]. This is because network traffic acipy will help
each webmaster to optimize their website, maximizkne marketing conversions and result in campéaigoking
[9,10]. Furthermore, detecting the efficiency ardfprmance of IP networks based on accurate ananaed traffic
measurements is an important topic in which re$eaeeds to explore a new scheme for monitoring owtraffic
and then find out its proper approach to prediet #ttual traffic accurately[11,12]. Many models ddween
developed to study complex traffic phenomena [1Bat®l the demand for accurate traffic parametediption has
long been recognized in the international scientiferature [20-22].

The main purpose here is to obtain a better uralatstg of the characteristics of the network tcaffbne of the
methods used for the preventive control is to mtettie near future traffic in the network and thake appropriate
measures such as controlling buffer sizes. Seweodks developed in the literature are interestedesmlve the
problem of improving the efficiency and effectivesef network traffic monitoring by forecasting aatacket flow
in advance. Therefore, an accurate network traffediction model should have the ability to captilme prominent
traffic characteristics, e.g. short and long radgpendence, self-similarity in large time scaid enulti-fractal in

small-time scale. Several traffic prediction scherhave been proposed .
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Using quantum particle swarm optimization[26-28]handle complex problems with lots of extremum ties
problem of relapsing into local extremum, slow cergence velocity and low convergence precision.uAngum
particle swarm optimization based on chaotic séagcls proposed. Extremum disturbance can helpigbest
quickly break away from the local optimum, and dimsearching can improve the local searching gbilrhe
experiment results show that the proposed algorithbretter than traditional quantum particle swaptimization
in ability of breaking away from the local optimurgnverging speed and precision. Then we use ghaitisle
swarm optimization algorithm to optimize the partene of SVM[23-25]. Simulations and comparisons
demonstrate the effectiveness an efficiency of yévameter optimization using chaos particle swaptimazation
algorithm. Since network traffic is complex and tiisting prediction models have various limitadpm new
network traffic prediction model based on wavelansform and optimized support vector machine appsed.
Firstly, the network is decomposed to the scaliagfficients and wavelet coefficients by non-deciedatvavelet
transform based on suitable wavelet basis and deasition level. Then they are sent individuallyardifferent
SVM with suitable kernel function for predictionh@ parameters of SVM are selected by chaos padiglgm
optimization algorithm. Finally predictions are ngbined into the final result by wavelet reconstiutt
Experiments on network traffic of different timeagularity show that compared with other networkffiza
prediction models, our proposed method has bettidopmance.

In the next section, we introduce an improved quanparticle swarm optimization. In Section 3 wepo®e a new
network traffic prediction based on chaos partmh@arm optimization SVM. In Section 4, we test tlegfprmance
of different network traffic prediction model. Ire&ion 5 we conclude the paper and give some resnark

II. AN IMPROVED QUANTUM PARTICLE SWARM OPTIMIZATION

A. Quantum particle swarm optimization

In quantum particle swarm optimization, particlen cearches for global optimal solution in the felesisolution
space. The algorithm has small parameters andsis teacontrol. The state of particle is represeriiggosition

vector and each particle must converge to its oamdom pointPP, PP =(PP,,PP,,...,PP,). Particles
move according to the following three equation.

rrbst(k+1):%ie(k)
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]=1,2;--d,r=rand(0,1), u=rand(0,1). N is the number of particle and is dimension of
particle.mbest(k +1) is average position of particle individual optinpaisition pbest(K) in the k-th iteration.
P, (k) is the j-th dimension position of the i-th paltién the k-th iterationP; (k) is the j-th dimension global
optimal position in the k-th iterationPP, (k +1) is random point betweef, (k) and P;(k) . B(k) is
contraction expansion coefficient, which can calritne convergence speed of the algorithm.
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f.(k) is the fitness value of the i-th particle of thehkiteration, f,_, (K) is the optimal fitness of the k-th

population, f,, (K) is the average fitness of the k-th population. Tirecess of quantum particle swarm
optimization is as follows.

Stepl. Iteration timé&k = O..Initialize the position vector of each particletie swarm.
Step2. Calculate fitness valufe, of each particle according to objective function.

Step3.Update individual optimal fitneg3estfitness of each particle and individual optimal positiéh.

Step4.Update global optimal fitne€bestfitnessof each particle and individual optimal positi?) .

Step5.Calculate the new position of each partictmaling to (1), (2)and (3).
Step6k =k +1 and return to step2 to recalculate, until meestopeping condition.

B. Animproved particle swarm optimization based on chaos

In QPSO evolution process, each particle go on seatching by studying its individual optimal Idoat and the
current global optimal location. When each particégs in local optimum, it can use other partictegump out of
local optimal. But when most of the particles aapped in local optimal, algorithm stagnation phaeaon will

occur. In multi-start PSO after each iterationdeveral times, it reserves the current particlersw@ptimal position
and all particles are initialized, in order to irope the diversity of population to expand the seagace. But all
particle swarm initialization will completely desyr the structure of the particle swarm, which wgitkatly slow
down the rate of convergence of the algorithm. Huyvaroposed an improved algorithm, which adjustetividual

optimal value and global optimal value and makeigarconverge to the new position. It can expereemew
search path and area to find the new solutionohticuous populations, if it can not find a optirsalution, it begin
to disturb individual optimal position of particend the global optimal position and forces to cleairglividual

history optimal fithess and global optimal fithedgatrticle.

If PlterCount >Tp, then do individual extreme disturbance to resethedimension of individual optimal
position of particle.

R =rand(0,1)L(Xup (j )~ Xdown j ))+ Xdoan j ) )
PlterCount is stagnation steps of particle individuIlj is threshold of stagnation steps of particle irdiial.
Xup(j) is upper limit of the j-th dimension of particlaca Xdown( j) is lower limit of the j-th dimension of

particle. Then update history optimal fitness aftipte Poestfitness(i) = f (R, P, R,). If Gltercount >T;, then
do global extreme disturbance to reset each diroerdi global optimal posmon of particle.

Ry =rand(0,1)e<up j )— Xdown(j ))+ Xdoan(j ). 6)

Giltercount is global optimal stagnation steps, a'ﬁ,g is threshold of global optimal stagnation stegseeupdate
global optimal fitnes€Ghestfitness(i) = f (P

oL gz, . ,Pgd ).Group fitness variance is defined as (7).

—Z[f_f j @)

N is the number of population anfi is normalized scaling factor, which can limit iee ofo?.

max{| f, — f f—-f.>1
f= {1]sisN KisN VQI} . (8)
1, others

2296



WengLing J. Chem. Pharm. Res,, 2014, 6(7):2294-2303

o reflects convergence degree of all particles enghrticle swarm. The smaller tigg” , the particle swarm tend
to be converge. Otherwise particle swarm is in oamdsearching stage. With the iteration times ingiren

individual fitness of particle swarm is more andrenalose, sao? will be smaller and smaller. Whes® <T ,
algorithm will do local searching intensively.

Using ergodicity, regularity,and randomness of cheariable can optimize the searching processhdffarticles
find solution near global optimal solution, the ohaearch can greatly enhance the local refinectisedility of
particle swarm. If particles trapped in local optim, the chaos search can also help particlesfdatal optimum
to a certain extent. In this paper, the chaoticcdealgorithm is aimed at each dimension of glai@imal location

F’g of quantum particle swarm optimization. The praceschaos searching is as follows and its flowrtcisaFig. 1.

Stepl.i =0 andi is label of chaos searching of particle swarm.

Step2. Do chaos searching to the i-th dimensioﬁi}of

(1)lteration timel =0 and chaos variabl€ (I) belonging to[-1,1] is generated randomly which does not
include chaos fixed point.

@)If C (1) >0, (9) sets up. Otherwise (10) sets up.
P:{ RHRGH  R2Ow)

TR +0WO-RITH e

R =P +(F; — Xdown(i)) [T, (1). (10)
If f(P) <Gbsetfitness, Gbsetfitness= f (P), Pi =P.
@)1 =1+1, C(l)=sin(2/C ( - 1).
(4)Repeat (2) and (3) until given maximum chaosatten time N, comes.

Step3.i =i+1
Step4. Return to step 2 to recalculate until mfleshsions of particle experience chaos searching.

(9)

The proposed new particle swarm algorithm basedhaos searching and extreme disturbance is asviobmd its
flow chart is Fig. 2.

Stepl.lteration timé&k =0 and maximum chaos iteration tinMd, is established. Position of each particle in the
swarm is initialized.
Step2. Calculate fitness of each particle accortbngpjective functionfi .

Step3. Update individual optimal fitne$2oestfitness and individual optimal positiorl? .

Step4. According tdPlterCount determine whether the particle stops. If it stapn do individual extreme
disturbance. Otherwise turn to step 5.
Step5. Update global optimal fitne&bestfitness and global optimal positioff?, .

Step6. According toGltercount determine whether the swarm stops. If it stopgntlio global extreme
disturbance and turn to step 7.

Step7. Calculate swarm fitness variangé. If o <T , do chaos searching and turn to step 8.
Step8. Calculate new position of each particle ating to (1), (2) and (3).

Step9.k = Kk +1 and return to step 2 to recalculate until the teaincondition is met.
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Figure 1. Chaos sear ching flow chart

lll. A NEW NETWORK TRAFFIC PREDICTION SCHEMEBASED ON CHAOSPARTICLE SWARM SVM
Parameters selection of SVM is a kind of combiriatooptimization problem and is the search for gmiral
solution in search space. Parameter optimizatioogss of SVM based on intelligent algorithm is@kvs and its
flow chart is Fig. 3.

Stepl. Within given parameter range, prodidenumber of particles randomly, which N groups of SVM
parameter{&,C, ). Use real coding so that we need randomly initgalithin the area of solution.

Step2. Calculate fitness of each particle.
(1) For each particle training seéixi,yi) ., with N number of samples is divided ink number of subset

G.G,, G, i =12, n.

(2) G groups of samples are used to check and otheetsuaee used to train SVM. Error is calculated 1) (

Y; is the actual value an@j is output value.
2
Eg = z [yj _@j] : (11)
y;0G;
(3) repeat (2) fromG, until K groups of data are checked.
(4) Calculate fitness of particle using (12).

. 1
fit == . 12
itness n;EG (12)

Step3. According to the process of improved plartsevarm optimization based on chaos, go on thatite until
meeting the termination condition.

Step4. output optimal solutiotg, C, y).

Real network traffic shows not only short correatiand long correlation, but also has a periodatuiee. To
forecast the network traffic, the key point is tdract and separate different ingredients of thtsvagk traffic and
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set up model according to different characteristwssimplify complex issues. Considering sequeniter ghe
a Trous wavelet transform of the sequence can estabirect contact at the time point of each timaescwhich
has the time shift invariance and better geneniadizability of support vector machine (SVM). Thoaper proposes
a network traffic prediction model based on waveighsformation and optimized SVM.

start

[

SVM parameter initialization

|
)

Cross verification

Calculate cross
verification error

Ci(h)=sin(2/C;(1-1))

no
Meeting the termination T
condition ?

yes l

Optimal SVM parameter

finish

Figure 2. Parameter optimization process of proposed scheme
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Figure 3. Architecture of network traffic prediction

Architecture of network traffic prediction is shownFig .3. The detailed prediction process iscd®fs.

Stepl. Wavelet decomposition and reconstructiore dtiwice of wavelet base and wavelet decomposg@ries
have an impact on forecasting accuracy. Waveledrdposition series L is neither too small nor tog. Gioo small
L can't effectively isolate different frequency cheteristics of the network traffic. Too big L cassult in model
prediction error accumulated to the final foreaagtiesult, which lower prediction accuracy and alao increase
the computational complexity. So we should choaestlsle wavelet base and decomposition series ¢ordpose

network traffic data into wavelet coefficient§, d,,---,d, and scale coefficiena, .

2299



WengLing J. Chem. Pharm. Res,, 2014, 6(7):2294-2303

Step2. Data processing. Due to the bigger changgeraf the data, in order to improve the predictacuracy,
each signal component is normalized.

X=min(x )
max(x )— minf )
After normalizationX [0,1].

Step3. Model initialization. Determine the trainiegt and test set, according to minimum cross &taéid error
criterion choose a suitable embedding dimengiofor each coefficient component. Input vector antbatvector
of SVM prediction model are obtained accordingribedding dimensiorin.

X = (13)

Step4. Determination of SVM model. The processgdadithrough wavelet transform is approximatelyosth in

the high frequency part. This portion of the signah be predicted using the traditional linear nhoBeat the

complexity of network traffic requires constantljjasting the model parameters in order to adafiteachanging of
the flow condition. Parameter optimization of SV#§hased on improved chaos particle swarm.

Step5. SVM training and prediction. We adopt minimsequence algorithm.
Step6. Each prediction result is normalized invgraecording to (14).

X = x[max(x )— min(x )]+ min(x ). (14)
Then do wavelet reconstruction to get the finabipgrton of network traffic.

IV. EXPERIMENT RESULTS AND ANALYSIS

A. Rough time granularity network traffic prediction

Experimental platform is matlab7.0. In order to leate prediction performance, this paper we choosé mean
square error as performance index.

RMSE=,/%§](M -y)?. (15)

Y, is the real value an@i is prediction value. The smaller tHdMSE , the better the prediction performance.

Rough time granularity network traffic data comesnf http://newsfeed.ntcu.net/~news/2006, whicheméid a
total of 43 days network traffic per hour of primarode router. There are 1032 rough time granylakitta. 240
data of the first 10 days is taken as training & 792 data of the last 33days is taken as testhgBasic
parameter of chaos particle swarm optimization S¥ghown in TABLE | and TABLE II.

TABLE |- parameter of chaos particle swar m optimization SVM

Coefficient component ~ Population size  MaxiterN | T | T

c p ¢}
Scale coefficient 20 12 10 4 5
Wavelet coefficient 20 12 10 4 5

TABLE || parameter of chaos particle swarm optimization SVM

RBF core paramete Sigmoid core Sigmoid and Polynomial core Polynomial core
C £
14 parameterk parameterV/ parameted
[0.01,3] [0.001,1] [0,1] 2 [0.1,1000] [0.001,0.1]
[0.01,3] [0.001,1] [0,1] 2 [0.1,2000] [0.006,0.1]

TABLE |11 model prediction performance under different wavelet decomposition series

Decomposition seria 1 2 3 4 5
RMSE 10.3625| 5.8964 3.59083 3.2386 3.1337
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TABLE IV model prediction performance under different wavelet base

RMSE
Wavelet bas a3 di d2 d3 combinatioh
haar 2.4075| 7.599¢ 45394 3.0675 6.6557
db3 1.3444| 3.6425 3.1063 1.4526 3.5903
db4 1.0255| 3.3561 2.881p 1.2347 3.2264
db6 0.6569| 2.9786 2.5573 0.8569 2.5379
db8 0.1163| 2.5254 1.7973 0.5846 2.1383

TABLE V embedding dimension of each signal component

Signal component a di d2 g3
Embedding dimensionm 8 | 10| 8 6

TABLE Il is model prediction performance under fdilent wavelet decomposition serials. When decoitipos
becomes from 1 level to 3 level, RMSE decreaseskfjuiand later RMSE decreases slowly. Considerimg t
computation complexity and prediction accuracy, ttaéfic data is decomposed into 3 levels. TABLE dwes the
model prediction performance under different watvbkese. We can see that prediction performancé®fwhvelet
base is better than other wavelet base. So inptigier, we adopt db8 wavelet base to decompose rietvadfic
data into 3 levels. Then we obtain correspondingele coefficient d1, d2, d3 and scale coefficiaBt TABLE V

is embedding dimension of each signal componenBLRAVI is prediction performance contrast undeffetiént
core function after db8 wavelet decomposition. \&e see that Linear core SVM is better than othez &/M and

in scale coefficient layer, RBF core SVM has befperformance. We compare the performance of prapose
algorithm with other prediction models including BVimodel, model based on wavelet transformation BRd
naming WaBPNN, WFIRNN and WaSVM using standardigiartswarm optimization to optimize its parameters.
Input node of BP of each signal component is tmeesaith embedding dimension m. Number of hiddereidayode

is 12. Order of FIR id2% 2 and number of output node is 1. We do 20 timesgnent to acquire mean value of
RMSE. TABLE VIl is SVM model optimization parametef each layer. TABLE VIl is prediction performaac
contrast of different model.

TABLE VI model prediction performance under different corefunction

Kernel RMSE
dl d2 d3 da
Linear 2.2594 1.2693 0.5605 0.2185%
RBF 2.5255 1.7973 0.5846 0.1164
Sigmoid 2.4742 1.8569 0.5911 0.2531
Polynomial 2.6367 1.7281 0.6125 0.2598

TABLE VII svM model optimization parameter of each layer

. ) SVM parameter
Coefficient component  Chaos searching threshold |y C <
a3 2e-7 0.321] 544949 0.0013
dl le-7 X 837.359| 0.0174
d2 3e-7 X 279.916| 0.0169
d3 5e-7 X 292.234| 0.0131

TABLE V111 prediction performance comparison of different model

Model RMSE
a3 dl d2 d3 combination
SVM X X X X 14.1358

0.9216 8.2274
0.7282 3.6329
0.6571 2.1915
0.5605 1.6954

WaBPNN | 0.7639] 6.903¢ 2.322
WFIRNN | 0.3512| 3.8963 1.862
WaSVM | 0.1532| 2.7195 1.532
ChOSVM | 0.1163] 2.2594 1.269

W[+
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It can be seen that prediction of SVM model is lgest. Wavelet neural network is easy to trap iotcal
optimization. In a word, prediction accuracy of CBMM is better than other models.

B. Fine time granularity network traffic prediction

TABLE I X embedding dimension of each signal component

Signal component a? di d2
Embedding dimensionm 7 | 10| 8

TABLE X prediction performance comparison of different model

RMSE
dl d2 a2
Linear 1.9535| 1.036§ 0.860]
RBF 2.4641| 1.2084 0.851
Sigmoid 2.5394| 1.2668 0.882
Polynomial | 2.3898 1.339]1 0.906

Kernel

[V

TABLE XI svM model optimization parameter of each layer

. . SVM parameter
Coefficient component  Chaos searching threshold |y C £
a2 5e-8 0.689 570.03p 0.0021
dl 3e-7 X 540.869| 0.0172
d2 5e-8 X 634.083| 0.0151

TABLE XII prediction performance comparison of different model

Model RMSE
A2 dl d2 combination
SVM X X X 16.4367

WaBPNN | 2.1861] 8,8132 3.7541 7.2794
WFIRNN | 1.1861| 5.9354 2.1962 4.1478
WaSVM | 0.9065| 2.4614 1.296] 1.9763
ChOSVM | 0.8586| 1.9535 1.036B 1.5958

Fine time granularity network traffic data comesenfr http://ita.ee.Ibl.gov/html/contrib/BC.html.We atse BC-
Oct89Ext data set. Traffic data is transformed B0 traffic data. The first 200 data is takenrasing set and the
last 300 data is taken as testing set. We adoptwdh@let base to decompose traffic data to 2 Idweibedding
dimension of each signal component is shown in TEBX. TABLE X is prediction performance contrastdan
different core function after db8 wavelet decomflosi We can see that Linear core SVM is betten thner core
SVM and in scale coefficient layer, RBF core SVMs lietter performance. SVM model optimization partamis
shown in TABLE XI and prediction performance comgpan of different model is shown in TABLE Xll. We
compare the performance of proposed algorithm witker prediction model including SVM model. It che
concluded that prediction accuracy of ChOSVM igdrehan other models.

CONCLUSION

Network traffic shows obvious multi-scale charaistier, which is composed of different signals antfedent

components have different inherent law. Based encttmplex characteristics of network traffic, tpaper puts
forward a network prediction model based on wavedeiomposition and scale coefficient. The restitssthat the
optimized SVM has better generalization abilityG3VM can achieve ideal prediction accuracy onlygs small
number of training samples and its performancebigausly better than the single SVYM model and s@anxisting

combination forecasting model. It has good robusgnand strong generalization ability and high mtsald

accuracy.
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