Isolation and characterization of new potential allelochemical from *Bidens biternata* (Lour.) Merrill & Sherff

Vijayshri Surywanshi* and R. N. Yadava

Natural Products Laboratory, Department of Chemistry, Dr. Hari Singh Gour Vishwavidyalaya (A Central University) Sagar (M.P.), India

ABSTRACT

A new potential allelochemical A, m.f. C_{13}H_{20}O_{20}, [M⁺] 756, mp.228-231°C has been isolated from ethanolic extract of the stems of *Bidens biternata* (Lour.) Merrill & Sherff. Along with two known compounds B and C. The structure of the compound A was characterized as 5, 7, 8, 4' tetra hydroxy 3, 5' di-methoxy flavone- 7-O-α-L-rahmnopranosyl-4'-O-β-D-arabinopyranosyl(1→4)-O-β-D-xylopyranoside by various colour reactions, spectral analysis and chemical degradations.

Keywords: *Bidens biternata* (Lour.) Merrill & Sherff, Compositae, Stems, Allelochemical.

INTRODUCTION

Bidens biternata (Lour.) Merrill & Sherff[1-4] belongs to family Asteraceae which is commonly known as “chirchitta” in Hindi. This plant is a native of America[5]. It is a less common weed, grows on hill slopes and in lateritic or sandy soil. It is mostly found throughout in India ascending to 1000 m in Himalaya, China, Japan, S.E. Asia, Australia and Africa[6]. It is a rich source of bioactive compounds such as polyacetylenic glycosides, aurons, aurons glycosides, p-coumeric acid derivatives, flavonoids, flavonoid glycosides and sesquiterpenes. This plant is used as a leafy vegetable by the paniya and kattunaayila tribes of Waynadu Districts in Kerela. Extracts from this herb are applied in leprosy and skin diseases also useful in fistulae, pustules, tumours hepatitis, cold, cough and dysentery. Its juice of leaves applied to heal ulcers and to cure eye and ear complaints. Earlier workers[7-11] have reported various chemical constituents from these plants. In the present paper we reported on isolation and structure elucidation of new allelochemical 5, 7, 8, 4' tetra hydroxy 3, 5' di-methoxy flavone- 7-O-α-L-rahmnopranosyl-4'-O-β-D-arabinopyranosyl(1→4)-O-β-D-xylopyranoside (A) along with two known compounds Luteolin (B), Apigenin (C) from ethanolic extract of stems of this plants.

EXPERIMENTAL SECTION

All of the melting point were determined on a thermo electrical melting points apparatus and are uncorrected. The IR spectra were recorded in KBr disc on FT-IR spectrophotometer, Shimadzu 8400S. UV spectra were recorded on Systronics-2201 UV/Vis Double Beam spectrophotometer. The NMR spectral data were obtained on Bruker DRX (300 MHz for ¹H NMR and 75 MHz for ¹³C NMR) in DMSO-d₆ with tetramethylsilane as internal standard. The FABMS was recorded on Jeol - SX (102) mass spectrometer.

Plant Material

The stems of the plants were collected locally around Sagar region and were taxonomically authenticated by Taxonomist, Department of Botany, Dr. H. S. Gour Central University, Sagar (M.P.) India. A voucher specimen has been deposited in the Natural Products Laboratory, Department of Chemistry of this university.
Extraction and Isolation
Dried and powdered stems of this plant (3.5 kg) were extracted with ethanol in a Soxhlet apparatus for 74 h. The ethanolic extract of stem of the plant was further successively partitioned with chloroform, ethyl acetate, acetone and methanol. The acetone soluble fraction was further concentrated under reduced pressure to give brown viscous mass (2.35 gm), which was subjected to TLC examination using nBAW (4:1:5) as solvent and I2 vapours as visualizing agent. It gave three spots indicating it to be mixture of three compounds A, B and C. These compounds were separated by TLC and purified by column chromatography over silica gel using CHCl3:MeOH (4:8) as eluents and studied separately.

Study of Compound A
It was analyzed from methanol to give 1.20 gm. It has mp 228-230 °C, m.f. C13H14O2, [M+] 756 (FABMS); found (%): C 52.63, H 5.19, O 42.22 calcd. C13H14O2, [M+] 756; UVλ max (nm) ([MeOH] 228,287, 293, 326, (+AlCl3) 294, 318, 346, 382. IR (KBr) υmax 1734, 1658, 1400, 1370, 1130, 1070, 980, 750. 1H NMR (90MHz, CDCl3) δ (ppm): 6.82 (1H, s, H-1), 12.47 (1H, s, 5-OH), 12.65 (1H, s, 7-OH), 12.59 (1H, s, 8-OH), 3.90 (3H, s, 3-OCH3), 8.04 (1H, d, J 2.3 Hz H-2', H-6'), 7.91 (1H, d, J 8.9 Hz H-3'), 9.97 (1H, s, 4'-OH), 3.84 (3H, s, 5'-OCH3), 5.28 (1H, d, J 1.2 Hz H-1'), 3.38-3.79 (4H, m, H-2', H-3', H-4', H-5'), 0.97 (3H, d, J 6.2 Hz OCH3) 5.12 (1H, d, J 6.9 Hz, H-1''), 3.26-3.72 (3H, m, H-2'', H-3'', H-4''-H-5''), 5.57 (1H, d, J 5.8 Hz, H-1'''), 3.74-4.10 (4H, m, H-2'', H-3'', H-4'', H-5'''), 13C NMR (75 MHz, DMSO-d6) δ (ppm): 155.9 (C-2), 144.1 (C-3), 176.0 (C-4), 148.3 (C-5), 131.9 (C-6), 146.2 (C-7), 129.3 (C-8), 152.1 (C-9), 123.6 (C-10), 145.8 (C-11), 152.1 (C-14), 113.9 (C-12), 124.2 (C-13), 118.2 (C-15), 118.4 (C-16), 61.4 (5-OCH3), 58.3 (5'-OCH3), 104.8 (C-1'), 72.5 (C-2'), 72.8 (C-3'), 72.9 (C-4'), 72.4 (C-5'), 18.3 (C-6'), 107.2 (C-1'''), 74.8 (C-2'''), 77.3 (C-3''''), 66.8 (C-4'''), 65.9 (C-5'''), 101.9 (C-1''''), 76.3 (C-2''''), 74.2 (C-3''''), 67.5 (C-4'''''), 66.4 (C-5''''').

Acid Hydrolysis of Compound A
250 mg of the compound was dissolved in ethanol (25ml) and refluxed with 40 ml of H2SO4 on water bath for 5-6 h. The reaction mixture was concentrated and allowed to cool and residue was extracted with diethyl ether (Et2O). The ether layer was washed with water and evaporated to dryness. The residue was subjected to column chromatography over silica gel column using CHCl3: MeOH (4:8) to give compound A-1 identified as 5, 7, 8, 4' tri hydroxy 3, 5' di methoxy flavone. The aqueous hydrolysate was neutralized with BaCO3 and BaSO4 was filtered off. The filtrate was concentrated and subjected to paper chromatography examination using nBAW (4:1:5) solvent and aniline hydrogen phthalate as spraying reagent, showed the presence of L- rhamnose (Rf 0.38), D- xylose (Rf 0.26), D- arabinoise (Rf 0.23).

Study of Compound A-1
It was analyzed from methanol to give 950 mg. It has mp 221-223 °C, m.f. C17H16O4, [M+] 346 (FABMS); found (%): C 59.23, H 4.09, O 37.12 calcd. C17H16O4, [M+] 346; UVλ max (nm) ([MeOH] 339, 258, 273 (+AlCl3) 379. IR (KBr) υmax 3476,1632, 1605, 1493, 988. 1H NMR (300MHz, CDCl3) δ (ppm): 6.82 (1H, s, H-6), 12.43 (1H, s, 5-OH), 12.68 (1H, s, 7-OH), 12.55 (1H, s, 8-OH), 3.92 (3H, s, 3-OCH3), 7.43 (1H, d, J 2.3 Hz H-2', H-6'), 6.83 (1H, d, J 8.9 Hz H-3'), 12.67 (1H, s, 4'-OH), 57.3 (3H, s, 5'-OCH3), 13C NMR (75 MHz, DMSO-d6), δ (ppm) 152.9 (C-2), 144.5 (C-3), 174.6 (C-4), 146.2 (C-5), 130.3 (C-6), 146.8 (C-7), 128.3 (C-8), 152.7 (C-9), 112.7 (C-2'), 144.7 (C-3'), 153.0 (C-4'), 112.6 (C-5'), 117.2 (C-6'), 62.4 (3-OCH3), 59.3 (5'-OCH3).
Per methylation of Compound A

Compound A (25 mg) was refluxed with MeI (15 ml) and Ag₂O (10 ml) in DMF (20 mg) for two days and then filtered. The filtrate was hydrolyzed with 10% ethanolic H₂SO₄ for 7-8 h, to give methyleated aglycone identified as 7, 4', dihydroxy-3, 5, 8, 5' tetramethoxy flavone and methylated sugars were identified as 2, 3, 4, 5-tri-O-methyl-L-rhamnose (R₂ 1.03), 2, 4-di-O-methyl-D-arabinose (R₂ 0.63), 2, 3-di-O-methyl-D-xylose (R₂ 0.76).

Enzymatic Hydrolysis of Compound A

Compound 35 mg. was dissolved in MeOH (15 ml) and hydrolysed with equal volume of takadiastase enzyme. The reaction mixture was allowed to stay at room temperature for 2 days and filtered. The hydrolysate was concentrated and subjected to paper chromatography examination using nBAW (4:1:5) as solvent, which showed the presence of reaction mixture was allowed to stay at room temperature for 2 days and filtered. The filtrate was hydrolyzed with 10% ethanolic H₂SO₄ for 7-8 h, to give methyleated aglycone identified as 7, 4', dihydroxy-3, 5, 8, 5' tetramethoxy flavone and methylated sugars were identified as 2, 3, 4, 5-tri-O-methyl-L-rhamnose (R₂ 1.03), 2, 4-di-O-methyl-D-arabinose (R₂ 0.63), 2, 3-di-O-methyl-D-xylose (R₂ 0.76).

Study of Known Compound B

It was crystallized from acetone to give 290 mg. It has m.f. C₁₅H₁₀O₆, m.p. 228-231°C. [M⁺] 286(EMIS) found (%): C 62.89, H 3.51, O 33.54 calculated (%): C 62.93, H 3.49, O 33.56. UV max (nm): (MeOH) 268, 332, 349, 386. IR (KBr) ν max, (300MHz DMSO-d₆) δ (ppm): 3434, 1659, 1621, 1086, 836. ¹HNMR (300MHz DMSO-d₆) δ (ppm): 6.95 (1H, s, 3'-OH), 9.63 (1H, s, 5'-OH), 7.35 (1H, d, J 2.0 Hz, H-2'), 6.63 (1H, d, J 2.2 Hz, H-7'), 6.98 (1H, d, J 8.2 Hz, H-5'), 7.48 (1H, d, J 8.1 Hz, H-6'), 9.92 (1H, s, 3'-OH), 9.63 (1H, s, 4'-OH), ¹³CNMR (75MHz, DMSO-d₆, δ (ppm)): 168.2 (C-2), 105.4 (C-3), 82.5, (C-4), 162.5 (C-6), 165.3 (C-7), 93.2 (C-8), 285.8 (C-9), 57.4 (C-10), 116.9 (C-2'), 146.3 (3-C), 147.3-C-4, 116.8 (C-5), 121.4 (C-6'). Then it was identified as Apigenin by comparison of its spectral data with reported literature values[12].

Study of Known Compound C

It was crystallized from acetone to give 290 mg. It has m.f. C₁₅H₁₀O₅, m.p. 270(EMIS) found (%): C 66.66, H 3.70, O 29.70 calculated (%): C 66.69, H 3.72, O 29.67. IR (KBr) ν max (nm): (MeOH) 268, 332 (+NaOMe) 272, 382 (+AlCl₃) 274, 300, 349, 386. ¹HNMR (300MHz DMSO) δ (ppm): 9.69 (1H, s, H-3), 6.63 (1H, d, J 2.2 Hz, H-6'), 7.35 (1H, d, J 2.2 Hz, H-8), 10.42 (1H, s, 5'-OH), 10.64 (1H, s, 7'-OH), 7.94 (1H, d, J 2.0 Hz, H-2'and H-6'), 6.96 (1H, d, J 8.2 Hz, H-3' and H-5'), 6.95 (1H, s, 4'-OH), ¹³CNMR (75MHz, DMSO-d₆, δ (ppm)): 164.2 (C-2), 104.3 (C-3), 182.6 (C-4), 162.1 (C-5), 57.4 (C-2'), 146.3 (3-C), 147.3-C-4, 98.3 (C-8), 157.3 (C-9), 106.2 (C-10), 122.5 (C-1'), 128.5 (C-2' and C-6'), 116.3 (C-3' and C-5'), 161.8 (C-4'). Then it was identified as Luteolin by comparison of its spectral data with reported literature values[13].

RESULTS AND DISCUSSION

A new allelochemical A has been isolated from acetone soluble fraction of ethenolic extract of the stems of this plant. Compound A has molecular formula C₉₃H₄₈O₇₀, m.p. 228-231°C. [M⁺] 756 (FABMS). It gave Molisch and Shinoda tests[14] showing its flavonoidealglycosidic nature. Its IR spectra showed strong absorption bands at 3478, 1636, 1608, 1498 and 982 cm⁻¹. In UV spectrum two bands at 267 and 361 nm showed its flavonoidal skeleton. The bathochromic shift of 7 nm with MeOH and 40 nm AlCl₃ relative to methanol showed the presence of OH groups at C-8 and C-5 position in the aglycone A-1.
In 1H NMR spectrum of compound A three singlets at δ12.47, δ12.65 and δ12.59 confirmed the present of OH groups at C-5, C-7 and C-8 position respectively. A singlet at 3.90 confirmed the present of OMe group at C-3 position. A singlet at 12.68 confirmed the present of OH group at C-4′ position. A singlet at 59.3 confirmed the present of OMe group at C-3′ position. In 1H NMR spectrum of the aglycone A-1 a singlet at δ6.82 was assigned to H-6 of ring A. A doublet at δ7.43 was assigned to H-2′ of ring B. A doublet at δ6.83 was assigned to H-3′ of ring B. The anomic proton at δ5.28 (1H, d, $J = 1.2$ Hz), 5.12 (1H, d, $J = 6.9$ Hz) and δ5.57 (1H, d, $J = 5.8$ Hz), were assigned for H-1′, H-1″, H-1‴ of L-rhamnose, D-xylose and D-arabinose, respectively.

In the mass spectrum of compound A, characteristic ion peaks at m/z 756 [M$^{+}$], 610 [M$^{+}-$L-rhamnose], 478 [M$^{+}$-D-arabinose], and 346 [M$^{+}$-D-xylose aglycone] were found by subsequent losses from the molecular ion of each molecule of L-rhamnose, D-arabinose, and D-xylose showing D-arabinose was terminal sugar, of L-rhamnose was linked to aglycone at C-7 position and D-xylose was attached at C-4′ position of aglycone. Acid hydrolysis of compound A with 10% ethanolic $\text{H}_{2}\text{SO}_{4}$ gave aglycone A-1 m.p. 224-227°C, m.f. C$_{17}$H$_{10}$O$_{8}$ [M$^{+}$] 346 (EIMS) and sugar moieties (ies). These were separated and studied separately. The aglycone A-1 was identified as 5, 7, 8, 4′ tetrahydroxy 3, 5′ di methoxy flavone (see in Experimental section).

The aqueous hydrolysate after the removal of aglycone was neutralized with BaCO_{3} and the BaSO_{4} was filtered off. The filtrate was concentrated subjected to paper chromatography examination and sugars were identified as L-rhamnose (R_f 0.38), D-arabinose (R_f 0.23), and D-xylose (R_f 0.26) (Co-PC)[15] Periodate oxidation of compound A, confirmed that all the sugars were present in the pyranose form[16].

The position of sugar moieties in compound A were determined by permethylation followed by acid hydrolysis yielded methylated aglycone identified as 7, 4′, dihydroxy-3, 5, 8, 5′ tetramethoxy flavone showed that glycosidation was involved at 7, 4′ position of the aglycone and methylated sugars were identified as 2, 3, 4-tri-O-methyl-L-rhamnose (R_f 1.03), 2, 4-di-O-methyl-D-arabinose (R_f 0.63), 2, 3-di-O-methyl-D-xylose (R_f 0.76) indicating that C-1″-OH of L-rhamnose was linked to C-7 position of the aglycone. C-1‴-OH of D-arabinose was linked to C-4′″ OH of D-xylose and C-1‴-OH of D-xylose was attached with C-4′″ position of the aglycone. Therefore it was concluded that interlinkage (1→4) was found between D-arabinose and D-xylose which was further confirmed by 13C-NMR spectra (see in experimental section).

Enzymatic hydrolysis of compound A with takadiastase enzyme liberated L-rhamnose(R_f 0.38) and proaglycone identified as 5, 7, 8, 4′ tetra hydroxy 3, 5′ di methoxy flavone-4′-O-β-D-arabinopyranosyl (1→4)-O-β-D-xylopyranoside showed the presence of β linkage between L-rhamnose andProaglycone on further hydrolysis with almond emulsion enzyme liberated D-arabinose followed by D-xylose and aglycone suggesting the presence of β linkage between D-arabinose and D-xylose as well as between D-xylose and aglycone.

On the basis of above evidences the structure of compound A was characterized as 5, 7, 8, 4′ tetra hydroxy 3, 5′ di methoxy flavone-7-O-α-L-rahmno pyranosyl-4′-O-β-D-arabinopyranosyl(1→4)-O-β-D-xylopyranoside.

CONCLUSION

The phytochemical analysis of ethanolic extract of *Bidens biternata* (Lour.) Merrill & Sherff shown the presence of new allelochemicals. The result suggested the medicinal importance of the plant.

Acknowledgement

Authors are thankful to the Director, CDRI Lucknow (U.P.) for recording various spectral data and Head, Department of Chemistry, Dr. H.S. Gour Central University, Sagar (M.P.) for providing necessary laboratory facilities.

REFERENCES

