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ABSTRACT 
 
Hyper spectral images are of high dimension. There are many number of data channels in a hyper spectral image. 
Segmentation of hyper spectral images is very difficult. In this paper a new segmentation technique for multispectral 
images is proposed. This paper introduces a concept that combined algorithm of FCM (fuzzy C) and fractional 
order Darwinian PSO can perform better in terms of classification accuracy. Fractional-order Darwinian particle 
swarm optimization (FODPSO) uses many sets of test data. Junction rate of particles are controlled by use of 
fractional derivative concept. Otsu problem is solved using this concept in remote sensing data. This paper classifies 
various features that are related to any remote sensing hyper spectral image. These features help us to analyse the 
images better for using in various applications. 
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INTRODUCTION 
 
Segmentation of an image partitions into various regions or parts. Each region is identified as objects with labels on 
each part or region. Image is classified in such a way that almost all the pixels in a region or part have similar 
spectral characteristics. Analysing the labels of a region provide better result than analysing every pixel of an image. 
Image segmentation [1] is regarded as an essential process in the study, elucidation, and understanding of images 
and is also widely used for image processing purposes such as classification and object recognition. 
 
In PSO (Particle Swarm Optimisation), there are number of particles that move in space to find a global minimum. 
A drawback in PSO is that Particles may be trapped in wrong local optimum points. To overcome the problem of 
local minima, concept of Darwinian principle is introduced. This concept is termed as Darwinian PSO 
(DPSO).DPSO also follows the same concept as PSO except that there are many sets of test data. There are rules 
governing test data. DPSO is further extended to FODPSO using fractional calculus to manage the junction rate of 
the algorithm. This paper compares PSO, DPSO and FODPSO.    
 
Image segmentation is an important area in study of images in remote sensing. To advance the classification, 
categorization [7] and segmentation are integrated. The process of assigning a pixel to a class is based upon the 
feature vector of the pixel and some characteristics from the segmentation step. To make this approach effective, an 
accurate segmentation [10] of the image is needed. A few methods for segmentation of multispectral and hyper 
spectral images have been introduced in the literature. All the regions are merged are based on the homogeneity.  
          
Image segmentation [4[6] can be divided into four precise categories comprising of histogram-thresholding-based 
methods, texture analysis-based methods, clustering-based methods, and region based split and merging methods. 
Thresholding [2] segments the images into many numbers of clusters. There are two classes of thresholding 
techniques. They are optimal and property based thresholding. Optimal thresholding algorithms search for optimum 
thresholding levels .This makes the threshold classes on the histogram to attain its wanted characteristics. Objective 
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functions are optimised to select thresholds. Property based thresholding spots the threshold level by calculating a 
few particular properties of the histogram. Property based thresholding are useful in case of multilevel thresholding 
as they are fast. Finding the number of threshold levels is difficult in these types of thresholding techniques. 
 
Many research papers have considered multilevel thresholding problems. Bi-level thresholding is decreased to an 
optimization problem to find the threshold level t that increases  (to find various between classes) and reduces  
(To find variance within classes).For two-level thresholding, the assessment of T* is important and this must 
convince the condition  
 
max   ((T*))  where 0 ≤ T* < L          (1) 
 
Where L is the maximum value of intensity level. This problem could be extended to n-level thresholding by 
satisfying  
 
max   (T*1, T*2 , . . . , T *n−1)           (2) 
 
Where 0 ≤ T*1 < T*2 < · · · <T*n−1 < L.First way to determine the optimal sets of threshold levels is to perform a 
search. This search is based on Otsu criterion. The process of finding optimal level by search is easier but it has a 
drawback that it is computationally costly. To find n−1 optimal thresholds we need to find evaluations of fitness of 
n(L − n + 1)n−1 combinations of thresholds. This makes search method not applicable for finding n level thresholds. 
The process of finding n − 1 optimal thresholding levels for n-level image thresholding could be designed as a 
multidimensional optimization problem. Steps involved are  
 
• FODPSO algorithm is used for image segmentation; 
• Complex data sets are used to compare it with other methods 
• Proposal of a new categorization approach based on the idea of the new segmentation method to improve the 
classification accuracy  
   

EXPERIMENTAL SECTION 
 

The routine assortment of an accurate optimum n-level threshold value is difficult for segmentation of remote 
sensing images. This paper formulates solution for segmentation of hyper spectral images [8]. 
 
Problem Formulation 
Let us consider L levels of intensity in an image e.g. an image with three colour components RGB has the intensity 
levels with a range of  {0, 1, 2, .. L − 1}. Then, a pixel can be defined as  
 

           (3) 

 
Where i refers a specific intensity level, i.e., 0 ≤ i ≤ L − 1; 
 
C represents the component of the image, e.g. C={R, G, B} for an RGB image; N represents the total number of 
pixels in the image; and  denotes the number of pixels for the respective intensity level i in component C. In other 
words,  denotes an image histogram for each component C, which can be normalized and considered as the 
probability distribution . The whole mean (i.e., joint mean) of every component of the image can be simply 
designed as      
     

= =1         (4) 

 
The n-level thresholding presents n − 1 threshold levels. ,j = 1, ……n − 1, and is calculated as (x,y) where x and 

y are the width (W) and height (H) of the pixel of the image of size H ×W denoted by fc(x, y) with L intensity levels 
for each component. Pixels of the image are divided as n classes Dc1 , . . . , Dcn , These classes denote variety of 
objects or still detailed features .These features include topological characteristics. The probabilities of occurrence 

 of classes Dc1 ………,Dcn are given by  
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=          (5) 

 
The easiest method of finding the thresholding level increases the variance between classes. Between class variance 
can be defined as 
  

=           (6) 

  
where j denotes a specific class in such a way that  is the probability of occurrence and is the mean of class j. 

The n-level thresholding problem is reduced to an optimization problem. The Fitness value of each image 
component C is  defined as    
  

          (7) 

 
The optimisation problem becomes more complex with increasing thresholding levels. 
 
General Approach 
PSO1 algorithm was initially proposed by Eberhart and Kennedy in 1995. The PSO algorithm uses the swarm 
intelligence idea. Swarm intelligence is properties in which various particles that interact among themselves make 
consistent global efficient patterns. The concepts of PSO, the DPSO and the FOPSO are combined to produce 
FODPSO. In FODPSO swarms struggle using Darwin’s survival-of-the-fittest principles and fractional calculus is 
used to control the junction rate of the algorithm. By the use of these principles the particles are avoided from the 
problem of local minima. Several PSO algorithms are run simultaneously. First local optimum is searched in a 
particular area. Then if it is not found, it is simply discarded and local optima is searched in some other areas. 
Swarms [3] that survive each test of finding local optima points are given an increased life period and particles that 
do not pass get a reduction in lifetime.  
 
Every particle a within every unlike group (swarm) s shifts in a many dimensional space based on position (xa[t]), 0 
≤ xa[t] ≤ L − 1, and velocity (va[t]). Local best (x̆a[t]) and global best (ğa[t]) information decide the position and 
location value. When the recent velocity is found, weights are given to the coefficients w, ρ1, and ρ2. These 
coefficients control the inertial influence, i.e., according to “the globally best” and “the locally best,” respectively. 
Typically, the inertial influence is set to a value slightly less than 1. ρ1 and ρ2 are constant integer values, which 
represent “cognitive” and “social” components. Results can be varied based on the values assigned to these 
parameters. Based on the application and the description of the predicament, changing the parameter values properly 
will lead to better results. The parameters r1 and r2 are random vectors, with each component generally a uniform 
random number between 0 and 1. The target is to multiply a new random component for each velocity dimension 
other than multiplying the same component with the velocity dimension of each particle. Values of α particle affect 
the inertial particles. Smaller α value of the particles disregards their earlier activities, thus avoiding the system 
dynamics and there is a problem of getting caught in local optima points. On the contrary the particles with a large α 
allow finding of new solutions and increases the long-term performance (i.e., exploration behaviour). If the 
exploration level is too high, then the process of finding global minima takes too much time.  
 

Table 1. Computational and Memory Complexities of PSO, DPSO, AND FODPSO 
 

Complexity PSO DPSO FODPSO 
Memory O(C) O(C ) O(4C) 

Computational O(n ) O(n ) O(n ) 

 
The memory complexity of the FODPSO is more than DPSO and PSO. FODPSO has memory properties related to 
the fractional extension. Due to the truncation order of the approximate fractional derivative, particle’s velocity is 
tracked depending on the number of components C of the image. The computational complexity of the three 
algorithms will increase with the number of desired thresholds n. The PSO algorithm depends on the number of 
particles NP within the inhabitant particles, the DPSO and FODPSO are based on the accumulated number of 
particles within each swarm. 
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Algorithm Evaluation  
The calculation time and the fitness value determine the performance of the algorithm. Since the data is large, the 
performance of the algorithm is restricted to a greater level. As hyperspectral [5][9] images are large in size, a new 
fast and effective algorithm is mostly preferable. Use of a high-speed algorithm is an important aim in real time 
applications. Analysis of processing time of CPU and the fitness value seems to be really important to illustrate the 
efficiency of the proposed method. Similarly the steadiness of diverse methods should be assessed by use of proper 
index such as standard deviation value. The capability of the conventional PSO- based segmentation has already 
been matched up to with other thresholding-based methods such as GA-based algorithms. The PSO-based method 
proves to better in terms of fitness value and CPU processing time.  

 
RESULTS AND DISCUSSION 

 
The following are the steps that we perform for segmentation of a hyper spectral image in MATLAB using 
FODPSO. This involves 
• Calculation of histogram for each spectral band 
• Mapping  
• Classification of various parameters 
 
Multispectral Input Image 

 
 

Figure 1: Input data for segmentation using FODPSO 
Histogram Calculation  
 

 
 

Figure 2.Histogram for each spectral band 

 
Figure 3. Spectral band of the given image 
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Figure 4. .Noisy Present in the image 

 
Mapping and segmentation 

 
Figure 5. Output segmented image 

Parameter calculation of FODPSO 
 

Table 2. Parameter calculation of FODPSO 
 

S.No Parameters Value 
1 autocorrelation [3.6049 3.5788] 
2 Contrast [0.8838 0.9371] 
3 Entropy [0.8014 0.8127] 
4 Energy [0.5877 0.5829] 
5 Sum Average [3.2187 3.2190] 
6 Sum Variance [11.1203 1.0332] 
7 Sum Entropy [0.7334 0.7406] 
8 Difference variance [0.8838 0.9371] 
9 Difference entropy [0.3211 0.3341] 
10 Maximum Probability [0.7478 0.7448] 
11 Inverse difference normalized [0.9732 0.9716] 
12 Inverse difference moment normalized [0.9879 0.9872] 

 
CONCLUSION 

 
In this paper, a fresh multilevel thresholding segmentation method has been planned for grouping the pixels of 
multi- spectral and hyperspectral images into diverse homogenous regions. The new method is based on FODPSO 
which is used in finding the optimal set of threshold values and uses many swarms of test solutions which may exist 
at any time. In the FODPSO, each swarm individually performs just like an ordinary (PSO) algorithm with a set of 
rules governing the collection of swarms that are designed to simulate natural selection. Moreover, the concept of 
fraction a derivative is used to control the convergence rate of particles. Experimental results compare the FODPSO 
with the classical PSO and DPSO within multilevel segmentation problems on remote sensing images from different 
points of view such as CPU time and corresponding fitness value. 
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