First total synthesis of Three Anti-tyrosinase Activity Prenylated Flavanones from Dalea boliviana

Department of Engineering Chemistry, Andhra University, Visakhapatnam, India

ABSTRACT
The total synthesis of three new prenylated flavanones, (2S)-5,7,2'-trihydroxy-8',3'-diprenylflavanone (I), (2S)-5,2'-dihydroxy-6',6''-dimethylchromeno-(7,8:2,3'')-3'-prenylflavanone (II) and (2S)-5,7,2'-trihydroxy-5'-1''',1'''-dimethylallyl)-8-prenyl flavanone (III) was first achieved through C-prenylation, protection of phenolic hydroxyl group, aldolcondensation, cyclization and deprotection starting from substituted benzaldehyde,2,4,6-trihdroxy acetophenone and o-hydroxybenzaldehyide,with total yield of 42%. All structures of new compounds were confirmed by IR, 1H NMR and LCMS.

Keywords: Dalea boliviana; Anti-tyrosinaseactivity; Flavanone; Isoprenylflavanoids.

Abbreviations: DDQ - 2,3-dichloro-5,6-dicyano-1,4-benzoquinone; MOMCl - chloromethyl methyl ether

INTRODUCTION
Natural isophenylflavanoids exists widely in the plant kingdom and exhibit many important biological and pharmacological activities[1-4].I,II and III (Fig.1),three new prenylated isolated from the n-hexane extract of Dalea boliviana roots.[5]. The above-mentioned compounds were evaluated in vitro in relation to their inhibitory effect on the tyrosinase activity .Dalea boliviana is an exclusively American genus with more than 250 species distributed in arid regions of the southwestern United States to the central regions of Argentina and Chile .The synthesis of I, II and III has not been reported so far. Here we would like to report the the total synthesis of Anti-tyrosinase Activity Prenylated Flavanones i.e I, II and III for the first time.
Melting points were recorded on a V Scientific melting point apparatus, in open capillaries and are uncorrected. IR spectra were recorded on a Perkin-Elmer BX1 FTIR spectrophotometer, 1H NMR (400 MHz) & 13C NMR (100 MHz) spectra on a Bruker 400 MHz NMR spectrometer and the values for chemical shifts (δ) being given in ppm and coupling constants (J) in Hertz (Hz). Mass spectra were recorded on Agilent 1100 Series LC/MS and elemental analysis was carried out on a Vario El Elementar instrument. Column chromatography was carried out using ACME silica gel (100-200 mesh/finer than 200 mesh).

RESULTS AND DISCUSSION

3.1. General Procedure
The desired isoprenylated flavanones were synthesized as shown in Scheme-I and Scheme-II starting from 2,4,6-trihydroxyacetophenone 1, which was prenylated with isoprenylbromide to furnish 1-(2,4,6-trihydroxy-3-(3-methylbut-2-en-1-yl)phenyl)ethanone 2, according to reported method[6]. Selective methoxymethylation of 2 with chloromethyl methyl ether (MOMCl) and anhydrous K$_2$CO$_3$ in dry acetone gave compound (1-(2-hydroxy-4,6-bis(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)ethanone) 3 [7]. Treatment of (2-hydroxybenzaldehyde) 4 and isoprenylbromide with KOH in water yielded major product 2-hydroxy-3-(3-methylbut-2-en-1-yl)benzaldehyde 5 [8]. Compound 5 was regioselectively protected with MOMCl to give compound (2-(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)benzaldehyde) 6 [9].

Compound 3 was condensed with Compound 6 in hydrous ethanolic solution by the action of KOH- H$_2$O-EtOH under Nitrogen to give compound (E-1-(2-hydroxy-4,6-bis(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)-3-(2-(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl) prop-2-en-1-one) 7 in 56 % yield[10]. Compound 7 was refluxed in solution of NaOAc in ethanol for 24 hours to form (5,7-bis(methoxymethoxy)-2-(2-(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)-8-(3-methylbut-2-en-1-yl)-chroman-4-one) 8 in 72 % yield, followed by hydrolysis with 3N HCl in MeOH to afford (I) in 87% yield (Scheme-I).

Compound (1-(5,7-di-hydroxy-2,2-dimethyl-2H-chromen-6-yl)ethanone) 9 was obtained from compound 2 by the action of DDQ refluxed in benzene [11]. Compound (1-(5-hydroxy-7-
(methoxymethoxy)-2,2-dimethyl-2H-chromen-6-yl)ethanone) 10 prepared from compound 9 by standard methoxy methylation in 85% yield.

Compound 10 was condensed with compound 6 in hydrous ethanolic solution by the action of KOH–H₂O in EtOH, under Nitrogen to give compound ((E)-1-(5-hydroxy-7-(methoxymethoxy)-2,2-dimethyl-2H-chromen-6-yl)-3-(2-(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)prop-2-en-1-one) 11 in 52% yield. Compound 11 refluxed in a solution of NaOAc in EtOH for 24 hours to form compound (5-(methoxy-methoxy)-2-(2-(methoxymethoxy)-3-(3-methylbut-2-en-1-yl)phenyl)-8,8-dimethyl-2,3-di-hydropyrano-[2,3-f]chromen-4(8H)-one) 12 in 73% yield, followed by hydrolysis with 3N HCl in MeOH to afford (II) in 78% yield (Scheme-I).

Scheme-I

Reagents and conditions:
(a) Isopropenylbromide, THF, rt, 24h, 55%
(b) MOMCl, K₂CO₃, Acetone, reflux, 84%.
(c) KOH-H₂O-EtOH, N₂, 76%
(d) NaOAc, EtOH-H₂O, reflux, 24h,
(e) MeOH, HCl, reflux 87%.
(f) Isopropenylbromide, KOH-H₂O
(g) DDQ, benzene, reflux 85%.

Compound (2-hydroxy-5-(2-methylbut-3-en-2-yl)benzaldehyde) 13 was regioselectively protected with chloromethyl methyl ether to give compound (2-(methoxymethoxy)-5-(2-methylbut-3-en-2-yl)benzaldehyde) 14 in 86% yield. Compound 14 was condensed with
compound 3 in hydrous ethanolic solution by the action of KOH–H₂O, EtOH under Nitrogen to give compound (Chalcone)15 in 52% yield. Compound 15 was refluxed in a solution of NaOAc in EtOH for 24 hours to form compound 16 in 68% yield followed by hydrolysis with 3N HCl in MeOH to afford (III). (Scheme-II).

Scheme-II

Reagents and conditions:
(b) MOMCl, K₂CO₃, Acetone, reflux, 86%
(c) KOH-H₂O-EtOH, N₂, 52%
(d) NaOAc, EtOH-H₂O, reflux, 24h
(e) MeOH, HCl, reflux 68%

3.2.1 Synthesis of Chalcones (7):
To a cold solution of the substituted acetophenone 3 (0.3 mmol) and benzaldehyde 6 (0.33 mmol) in EtOH solution of KOH in (2.0g) in H₂O-EtOH (2.0ml) solution was added with stirring. The resulting mixture was stirred under nitrogen at room temperature for 36h. The total reaction mixture was poured into ice cold water acidified with dilute HCl, and extracted with CHCl₃. The combined organic layer was washed with NaHCO₃ and water dried over Na₂SO₄ and concentrated in vacum. The residue was chromatographed over Silica gel by elution with Hexane-EtOAc (4:1) to give chalcone(Yellow coloured solid) 7 Yield: 76%, mp: 62-64 °C; IR (CHCl₃) νmax cm⁻¹: 3109, 2989, 1630, 1575, 1160, ¹H NMR δₘ (400MHz, CDCl₃): 1.75, 1.80 (3H, s, CH₃), 1.63, 1.74 (3H, s, CH₃), 3.49 (3H, s, OCH₃), 3.52 (6H, s, OCH₂X2), 6.21 (1H, d, J =7Hz), 7.12 (1H, d, J =7Hz), 7.65 (1H, d, J =7Hz), 7.98 (1H, d, J =16Hz), 14.36 (1H, br-s, OH); LCMS (POSITIVE MODE): 540 [M+H]⁺.

3.2.2 Synthesis of Flavanone (8):
A solution of 7 (0.2 mmol) and NaOAc (200mg) in EtOH (4.0mL) with 3 drops of water was refluxed for 24 h. The reaction mixture was diluted with cold water (20 mL) and extracted with CHCl₃. The combined organic layer was washed with NaHCO₃ and water dried over Na₂SO₄ and concentrated in vacum. The residue was chromatographed over Silica gel by elution with Hexane-EtOAc (4:1) to give Flavanone 8. (Pale yellow coloured solid)

Yield 72%, mp: 82-84 °C; IR (CHCl₃) νmax cm⁻¹: 2950, 1690, 1610, 1155; ¹H NMR: δₘ (400MHz, CDCl₃): 1.69 (6H, br, s), 1.60-1.69 (3H, s, CH₃), 2.94 (2H, d, J=7Hz), 3.32 (2H, d,
3.2.3 Demethoxymethylation of OH-Protected Flavanones (I, II and III):
To a solution of precursor to flavanone (0.1 mmol) in MeOH was added 10% HCl. The resulting mixture was refluxed, then poured into ice cold water and extracted with CHCl₃. The combined organic layer was washed with water, saturated NaHCO₃ solution and then dried over Na₂SO₄. After removal of solvent the residue was chromatographed over silicagel. Elution with Hexane-EtOAc (4:1) gave the desire molecules.

3.2.4 (2S)-5,7,2'-trihydroxy-8,3'-diprenylflavannone (I):
Yeild: 87%, mp: 56-58 °C; IR (CHCl₃) v max cm⁻¹: 3445, 1634, 1542, 1448; ¹H NMR δH (400 MHz, CDCl₃): 1.72 (3H, s, H-4''), 1.67 (3H, s, H-5''), 1.76 (3H, s, H-4'''), 1.76 (3H, s, H-5'''), 2.90 (2H, dd, J=3.0 & 17.3 Hz, H-3a), 3.19 (2H, dd, J=3.0 & 17.3 Hz, H-3b), 3.31 (2H, d, J=7.3Hz, H-1'') 3.36 (2H, d, J=7.3Hz, H-1''), 5.19 (1H, t, J=7.3Hz, H-2''), 5.32 (1H, t, J=7.3Hz, H-2'''), 5.67 (1H, dd, J=3.0 & 13.0Hz, H-2), 5.89 (OH, br, s, OH-2'), 6.03 (1H, s, H-6), 6.91 (1H, t, J=7.5Hz, H-5'), 7.11 (1H, dd, J=1.3 & 7.5Hz, H-4'), 7.23 (1H, dd, J=1.3 & 7.5Hz, H-4''), 12.03 (OH, s, OH-5); ¹³C NMR (100MHz, CDCl₃): δ 196.7 (C-4), 163.4 (C-5), 162.3 (C-7), 159.5 (C-9), 152.0 (C-2'), 135.4 (C-3''), 135.0 (C-3''), 130.1 (C-4'), 127.7 (C-3'), 124.9 (C-1'), 124.7 (C-6'), 121.5 (C-2''), 121.4 (C-2'''), 120.6 (C-5'), 106.3 (C-8), 103.2 (C-10), 97.1 (C-6), 76.6 (C-2), 41.9 (C-3a), 29.8 (C-1'''), 25.8 (C-4''), 25.7 (C-4''), 21.7 (C-1''), 17.8 (C-5''), 17.8 (C-5''): LCMS (POSITIVE MODE): 409 [M+H]+.

3.2.5(2S)-5,2'-dihydroxy-6'',6'-dimethylchromeno-(7,8;2,3'')-3'-prenylflavanone(II):
Yeild: 78%, mp: 52-54 °C; IR (CHCl₃) v max cm⁻¹: 3445, 1640, 1544, 1437, ; ¹H NMR δH (400 MHz, CDCl₃): 1.42 (3H, s, H-6''), 1.44 (3H, s, H-6''), 1.78 (3H, s, H-4'''), 1.79 (3H, s, H-5'''), 2.90 (2H, dd, J=3.8 & 17.3Hz, H-3a), 3.05 (2H, dd, J=12.2 & 17.3Hz, H-3b), 3.39 (2H, d, J=7.0Hz, H-1''), 5.32 (1H, m, H-2'''), 5.47 (1H, d, J=10.0 Hz, H-5''), 5.70 (1H, dd, J=3.8 & 12.2 Hz, H-2), 5.92 (OH, br, s, OH-2'), 6.02 (1H, s, H-6), 6.54 (1H, d, J=10.0Hz, H-4''), 6.92 (1H, t, J=7.6Hz, H-5'), 7.14 (1H, dd, J=1.8 & 7.4Hz, H-4'), 12.10 (OH, s, OH-5); ¹³C NMR (100MHz, CDCl₃): δ 196.0 (C-4), 163.7 (C-5), 162.0 (C-7), 156.4 (C-9), 150.0 (C-2'), 135.6 (C-3''), 131.0 (C-4'), 127.7 (C-3''), 126.4 (C-5''), 125.0 (C-1''), 124.7 (C-6'), 120.9 (C-2'''), 120.3 (C-5''), 115.2 (C-4''), 102.7 (C-10), 102.0 (C-8), 97.6 (C-6), 78.0 (C-5''), 76.2 (C-2), 42.0 (C-3a), 29.7 (C-1'''), 28.5 (C-6''), 28.3 (C-6''), 25.5 (C-4''), 17.7 (C-5''): LCMS (POSITIVE MODE): 407 [M+H]+.

3.2.5 (2S)-5,7,2'-trihydroxy-5'-(1''',1'''-dimethyl allyl)-8-prenylflavanone (III):
Yeild: 68%, mp: 49-51 °C; IR(KBr) v max cm⁻¹: 3385, 2960, 2918, 1632, 1600, 1504, 1265; ¹H NMR δH (400 MHz, CD₂COCD₃): 1.63 (3H, s, H-4''), 1.65 (3H, s, H-5''), 1.78 (3H, s, H-4'''), 1.78 (3H, s, H-5'''), 2.90 (2H, dd, J=3.0 & 17.0Hz, H-3a), 3.04 (2H, dd, J=12.5 & 17.0Hz, H-3b), 3.28 (2H, d, J=7.5, H-1'') 5.00 (2H, trans, d, J=10.5Hz, H-3''), 5.03 (2H, cis, d, J=17.3Hz, H-3''), 5.28 (1H, t, J=7.5Hz, H-2''), 5.76 (1H, dd, J=3.2 & 12.5Hz, H-2), 5.91 (OH, br, s, OH-2'), 6.02 (1H, dd, J=10.5 & 17.0Hz, H-2''), 6.05 (1H, s, H-6), 6.87 (2H, d, J=8.3Hz, H-3'), 7.20 (1H, dd, J=2.5 & 8.2Hz, H-4'), 7.62 (1H, d, J=2.5Hz, H-6'), 12.0 (OH, br, s, OH-5); ¹³C NMR
(100MHz, CD$_3$COCD$_3$): 196.8 (C-4), 164.2 (C-5), 162.0 (C-7), 160.2 (C-9), 151.5 (C-2'), 148.2 (C-2''), 139.5 (C-5'), 130.2 (C-3'''), 126.6 (C-6'), 125.0(C-1'), 124.0 (C-4''), 122.7 (C-2'''),115.0 (C-3''),110.0 (C-3'''), 107.5 (C-8), 102.4 (C-10), 95.6 (C-6), 74.8 (C-2) ,41.8 (C-3a), 40.2 (C-1'''), 28.0 (C-4'''), 28.0 (C-5'''), 25.0 (C-4'''), 21.6 (C-1'''), 17.2 (C-5''). : LCMS (POSITIVE MODE): 409 [M+H]+.

Acknowledgements
The authors are thankful to IICT, Hyderabad for 1H-NMR, 13C-NMR, LCMS and IR spectra.

REFERENCES