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ABSTRACT

In this work we have been calculated global and local DFT reactivity descriptors for butane derivatives at B3LYP/6-
311++G (d, p) level. Global reactivity descriptors such as ionization energy (IP), electron affinity (EA) molecular
hardness () and eectrophilicity (w), were calculated to evaluate the for butane derivates reactivity in gas phase.
The chemometric methods PCA and HCA were employed to find the subset of variables that could correctly classify
the compounds according to their reactivity. From the PCA and HCA results in this work, a classification model
was built with the aim to be used in the search for butene derivates for the reactivity.

Key words: Butene derivates, Density functional Theory, molec descriptors and Principal component analysis
(PCA) and hierarchical cluster analysis (HCA).

INTRODUCTION

1-butene is a linear alpha olefin (alkene), produeigher by separation from crude C4 refinery strear from the
reaction of ethylene. It is distilled to give a yérigh purity product.1-butene is used in the maotfre of a variety
of other chemical products. It fills an importamier in the production of materials such as lineaw density

polyethylene (LLDPE). The co-polymerisation of déne and 1-butene produces a form of polyethyléa¢ is

more flexible and more resilient. 1-butene can Aklp to create a more versatile range of polypermyresins. It is
also used in the production of polybutene, butylexide and in the C4 solvents secondary butyl ait¢BBA) and

methyl ethyl ketone (MEK).

Density functional theory based descriptors hawmdoimmense usefulness in the prediction of reégtof atoms
and molecules as well as site selectivity [1-5].e THesourcefulness of density functional descriptiorghe
development of QSAR has been recently reviewed Hgtt@raj et al [6]. Chemical hardnesg3, chemical potential
(1), electrophilicity indexd) and softness(s) are known as global reactiviscdptors. Recently Parr et al.[7] have
defined a new descriptor to quantify the globaketgphilic power of the molecule as electrophilicindex @),
which defines a quantitative classification of tjlebal electrophilic nature of a molecule withirredative scale.
The earlier works of Maynard et al.[8] have fornikd strong foundation for the electrophilicity ixd@), which
provided the direct relationship between the rafegaction and the ability to identify the fungtior capacity of an
electrophile and the electrophilic power of theiliitors.

Chemometrics refers to the application of statstend mathematical methods, in particular multatarmethods,
to handle chemical or process data. The need femometrics methods originates from the massive aitsoof
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data produced by modern measuring devices [9, @Bgmometrics tends to deal with data tables oricestr
consisting of several variables (columns of tallematrices) and measurement targets (rows ordaislenatrices)
as a whole rather than as single variables or meanariations of single variables [11]. This mudtiiate approach
enables finding the so-called latent variablesndorimation of interrelated variables in the oridinkta matrix
which can then be extracted. The latent variableletsoare based on the assumption that the origiai@ base
dimensionality is not a full rank [12]. The new dat variables are projections of the original Valéa on
multivariate space. Thus, even the 100 dimensigaghable spaces can be reduced into a subspacsstooypof a
few latent variables that describes underlying jpinegna [13] such that the originally 100 dimensisgace can be
visualized. There are several advantages of usialgivariate methods over univariate techniques [84¢h as
robust modeling, noise removal, handling of intérervariables or overlapping spectral profilestliea or fault
detection [12,14], variable reduction and undeditagn the reasons for similarity or dissimilarity wieasurements
(interpretation plus causality).

The present work reports the results of a systemthgoretical examination of butene derivates auamers
calculate more representative descriptors. Furtbesnthe multivariate methods, such as a princguahponent
analysis (PCA) and hierarchical cluster analysi€Aj have been employed with the aim of selectmg\tariables
responsible for reactivity and to describe propdHg relationship between the calculated descsptdr title
compound derivates.

EXPERIMENTAL SECTION

Quantum Chemical Calculation

All of the molecular structures were constructedusing ChemDraw Ultra 8.0. For every molecule, gtite was
suitably changed considering its structural featwapied to Chem3D Ultra 8.0 to create 3-D modhed,hodel was
subjected to energy minimization using (Dewar et18I85). The geometries of all compounds investigatere
completely optimized with the GAUSSIAN 09W progrdfib], employing the Becke3LYP functional [16—-18] of
the density functional theory [19, 20] (DFT) withet polarized triple zeta split valence 6-311++@)tasis set.
Moreover, the frequency calculations were performedverify the optimized structures to be at anrgpe
minimum.

Statistical Analysis

In this study, the correlation between the molecptaperties calculated and the stability and neggtstudied was
done by using the pattern recognition methods (R@& HCA). This statistical method has been apggdising
the statistical software Minitab 15 and kyPlot pegd programs.

RESULTS AND DISCUSSION

Relative stability
The structures correspond to butene molecules ddbat code shown in Table land these differ fooroid,
bromine, both chlorine and bromine, nitrogen anglgex atoms and hydroxy group at the different pasitn
butane molecule.

The optimized geometrics are shown in Figure lag pghase. The absolute electronic energies antedippments
are presented in Table 2, in gas phase, at DFEId@f theory in conjunction with 6-311++G (d,p)slsaset.
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Table: 1. The energies of butane derivates (in a.@nd dipole moments g, in Debye units) at DFT/6-311++G (d,p) level in gaphase

S.No Name codel pn Energy

1 1-Butene AA 0.4174 -157.2697121p

2 cis-2-butene AB| 0.2572 -157.27264225
3 trans-2-butene AC| 0.0000 -157.27461287
4 cis-1-chlorc-1-butent CA | 1.788. | -616.8941690

5 trans-1-chloro-1-butene CH 2.1616 -616.89393(23
6 2-chloro-1-butene CC| 1.8149 -616.89619493
7 4-chloro-1-butene CD| 2.1428 -616.89316452
8 1-chloro-2-butene CE| 2.6973 -616.89790700
9 cis-2-chloro-2-butene CH 2.2381 -616.899107¢45
10 tran«2-chlorc-2-butent CG | 1.824¢ | -616.9012240

11 cis-1-bromc-1-butent BA | 1.8217 | -2730.814634Z

12 trans-1-bromo-1-butene BH 2.1878 -2730.81452p79
13 2-bromo-1-butene BC| 1.8388 -2730.81577995
14 4-bromo-1-butene BD| 2.1572 -2730.81464954
15 1-bromo-2-butene BE| 2.7225 -2728.36696(084
16 cis-2-bromc-2-butent BF | 2.294t | -2730.8188864

17 trans-2-bromc-2-butent BG | 1.878¢ | -2730.820833¢t

18 (Z)-1-bromo-4-chlorobut-2-ene ~ EA 3.2469 -31903®69
19 (E)-1-bromo-4-chlorobut-2-enp  EH 0.4613 -319098246
20 (Z)-1-bromo-2-chlorobut-2-ene ~ E( 3.0214 -319P28628
21 trans-2-butenedinitrile NA[ 0.0000 -263.14432269
22 cis-2-buten¢1,4 dio DA | 4.204f | -307.6420753

23 trans«2-buten«1,4 dio DB | 2.688: | -307.7483900

24 cis-2-butenenitrile NB| 4.374p -210.21547790
25 trans-2-butenenitrile NC| 4.8666 -210.215324p9
26 3--butenenitrile ND| 4.0501 -210.20601765
27 cis-2-buten-1-ol OA| 1.8941 -232.50809714
28 trans-2-buter-1-ol OB | 2.278( | -232.5130651

29 3-buten-1-ol OC| 1.7459 -232.50766915
30 3-buten-2-ol OD| 1.8638 -232.5102937%2
31 3-buten-2-one OE| 2.9337 -231.30717297
32 1-buten-3-yne YA| 0.4254 -154.78337549
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Figure:1. The optimized structures of butane derivées in gas phase at DFT/B3LYP/6-311++G (d,p) level
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Table:1. The energies of butane derivates (in a.and dipole moments g, in Debye units) at DFT/6-311++G(d,p) level in gashase

S.No Name codg p Energy

1 1-Butene AA | 0.4174 -157.2697121p

2 cis-2-butene AB| 0.2572 -157.27264235

3 trans-2-butene AC| 0.0000 -157.27461287
4 cis-1-chloro-1-butene CAl 1.7881 -616.894169P0
5 trans-1-chloro-1-butene CH 2.1616 -616.89393(23
6 2-chloro-1-butene CC 1.8149 -616.89619493
7 4-chloro-1-butene CD| 2.1428 -616.89316452
8 1-chloro-2-butene CE 2.6973 -616.897907D0
9 cis-2-chloro-2-butene CH 2.2341 -616.89910745
10 trans-2-chloro-2-butene CG 18246 -616.90122407
11 cis-1-bromo-1-butene BAl 1.8217 -2730.81463432
12 trans-1-bromo-1-butene BH 2.18Y8 -2730.81452679
13 2-bromo-1-butene BC| 1.8388 -2730.81577995
14 4-bromo-1-butene BD| 2.1572 -2730.81464954
15 1-bromo-2-butene BE| 2.7225 -2728.36696084
16 cis-2-bromc-2-butent BF | 2.294! | -2730.8188864

17 trans-2-bromo-2-butene BG 1.8784 -2730.82083354

18 (2)-1-bromo-4-chlorobut-2-ene EA  3.2469 -31903&69

19 (E)-1-bromo-4-chlorobut-2-eng~ EH 0.4613 -319098246
20 (2)-1-bromo-2-chlorobut-2-eng  EC 3.0214 -319P28628

21 trans-2-butenedinitrile NA| 0.0000 -263.14432269
22 cis-2-buten¢1,4 dio DA | 4.204 | -307.6420753

23 trans-2-butene-1,4 diol DB 2.6883 -307.74839007
24 cis-2-butenenitrile NB| 4.374p -210.21547790
25 trans-2-butenenitrile NC| 4.8666 -210.215324p9
26 3--butenenitrile ND| 4.0501 -210.20601765
27 cis-2-buter-1-ol OA | 1.894. | -232.5080971

28 trans«2-buter-1-ol OB | 2.278( | -232.5130651

29 3-buten-1-ol OC| 1.7459 -232.50766915
30 3-buten-2-ol OD| 1.863 -232.51029372
31 3-buten-2-one OE| 2.9337 -231.30717297
32 1-buten-3-yne YA| 0.4254  -154.78337549

The results show that the chloro and bromo dersvatdbutane molecules are most unstable. The afdstability

of derivates was found to be butane > nitrogemxyger: hydroxyl group > chloro > bromo> chloro and bromo.
Figure 2 shows the effect of substituent’s on tabikty of butane. From the radar graph the dipolements shows
the nitrogen, hydroxyl group and the both chlonorbo derivates of butanes’ have high values coraparof other
derivates.
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Figure: 2. the plots of (a) energies vs molecules@the radar grapy (b) of dipole moments for butanederivates in gas phase
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Global and local reactivity descriptors

According to, the Koopmans’ theorem [21] for closdgbll molecules, ionization potential (I) and éfen affinity
(A) can be expressed as follows in terms of E(HOMM@Y E(LUMO) the highest occupied molecular orbital
energy, and the lowest unoccupied molecular orbitergy, respectively:

IP=-E,,o and EA=-E ,uo 1)

When the values of | and A are known, one can deter through the following expressions [22] theues of the
absolute electron negativity)( the absolute hardness)the chemical potential (1) and the softness S[#3
inverse of the hardness):

/\/:I+A- /7—_I_A- ,u:——(I+A) and S.—1 (2
2 2 2 n

The electrophilicity is a descriptor of reactivifyat allows a quantitative classification of thelgdl electrophilic
nature of a molecule within a relative scale. Reave proposed electrophilicity index as a meastirenergy
lowering due to maximal electron flow between domamd acceptor and defined electrophilicity inde® &s
follows[24].

2
w= H (3)

2n

According to the definition, this index measures tiropensity of chemical species to accept elestréngood,
more reactive, nucleophile is characterized by lowalue of W, ®, and conversely a good electrophile is
characterized by a high value of @, This new reactivity index measures the stabilirain energy when the
system acquires an additional electronic chafgeax from the environment [25].

AN =-H (4)

The maximum charge transf&Nmax towards the electrophile was evaluated usipg4y. Thus, while the quantity
defined by Eq. (3) describes the propensity of #system to acquire additional electronic charge frihra
environment; the quantity defined in Eq. (4) desesithe charge capacity of the molecule.

Very recently, Ayers and co-workers [26, 27] haveposed two new reactivity indices to quantify raghilic and
electrophilic capabilities of a leaving group, reafugality AEn) and electrofugalityAEe), defined as follows,

2 N2
AEn:EA+a):M and AEe=IP+w:M (5)
2n 2n

The global descriptors, chemical potential, chemibardness and chemical softness for all studsedners are
given in Table 3. lonization energy is a fundamkdgscriptor of the chemical reactivity of atomslanolecules.

High ionization energy indicates high stability aclemical inertness and small ionization energycates high

reactivity of the atoms and molecules. Absolutedhass and softness are important properties tsuneahe

molecular stability and reactivity. It is apparehat the chemical hardness fundamentally signifiesresistance
towards the deformation or polarization of the &t cloud of the atoms, ions or molecules undealsm
perturbation of chemical reaction.

Chemometric analysis

Principal component analysis (PCA) Principal congrdranalysis (PCA), is a linear projection method ased for
reduction of dimensionality and multivariate datenpression. The idea of PCA dates back in 19thucgmind was
named by Hotelling in 1933 [28, 29]. At that tirmathematicians explored multivariate data by fiftinonto lines
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and planes [28]. Today, PCA is one of the vastizetl multivariate methods since its wide appligapifor
multivariate problems. PCA is deployed for data pogssion [30] and data exploring within differerglds of
science. PCA is also used for checking groupinghefX data, as well as grouping among the Y da&irm[31,
32]. In process monitoring, PCA is used to deteehds, to find a correlation structure of variabtesd, in
particular, to examine the changes in variable edations [32, 33]. It should be noted that PCA dadible for
variable reduction if variables are correlated #mg contain a similar variance.

Clustering Methods Clustering is a data analysthri&ue that, when applied to a set of heterogendtauns,

identifies homogeneous subgroups as defined bwengnodel or measure of similarity. Of the manysusé

clustering, a prime motivation for the increasinterest in clustering methods is their use in #edion and design
of combinatorial libraries of chemical structurestment to pharmaceutical discovery. Clusteringhodology has
been developed and used in a variety of areasdimguarchaeology, astronomy, biology, computer reme

electronics, engineering, information science, isuedlicine.

The overall process of clustering involves the dafing steps: 1. Generate appropriate descriptorseézh
compound in the data set. 2. Select an appropsiatigarity measure. 3. Use an appropriate clusgenrethod to
cluster the data set. 4. Analyze the results. Tess$ this problem, many numerical clustering tephes have been
developed, and the techniques themselves havedbessified. For our purposes the methods consideeézhg to
one of the following types. (a) Hierarchical teaumés in which the elements or objects are clusterddrm new
representative objects, with the process beingatepeat different levels to produce a tree strgtilive dendrogram.
(b) Methods employing optimization of the partitiogn between clusters using some type of iteratigerahm,
until some predefined minimum change in the grospsroduced. (c) Fuzzy cluster analysis in whicleots are
assigned a membership function indicating theirréegf belonging to a particular group or set. his tstudy,
multivariate chemometric techniques have been egjpti evaluating grouping operations in butenevdges.

From PCA results, we can observe that the firgehprincipal components (PC1, PC2 and PC3) desgsil39% of
the overall variance as follows: PC1 = 80.69%, RPOZ.74% and PC3 = 1.46%. Since almost all of trgance is
explained by the first two PCs, their score pla ieliable representation of the spatial distidrubf the points for
the data set studied. The most informative scaveiplpresented in Figure 3 (PC1 versus PC2) andamesee that
PC1 alone is responsible for the separation betweme active and less active molecules.

Looking at Figure 3, we can see that the studietyttwo molecules were separated into four grob@sed on PC1
and PC2. The first group consisting of ND, NA, N@, DB, EB, EA, BE, EC, YA, and OE molecules beiao
PCA>1 and reaming molecules PCA<1. The principahponent 1(PC1>0) molecules are the more active and
PC1<0 for the less active molecules. The sametsefallow in the case of global reactivity trendskd omn.
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Figure: 3. Score plot for the butane derivates

The loading vectors for the first two principal gooments (PC1 and PC2) are displayed in Figure 4o/iting to
loading plot, PC1 can be expressed through theviiatig equation.

PC1 = -0.7933[HOMO] - 0.9947[LUMO] + 0.7933 [IP]0:9947[EA] + 0.9760] - 0.7218R]-0.9760[] + 0.7538
[s] + 0.9963f] + 0.9920 ANpa + 0.9008AE,] + 0.9775 PE(] + 0.7218]\E, gap]

(6)
From equation (6) we can see that more active taert® compounds (PC4 0) can be obtained when we have
higher IP, EAy , s,o, ANmax En, Ee, Values (notice that A, s,0, ANmax, En and Ee, have positive coefficients
in PC1 equation) combined with negatiyevalues for the less active molecules. In this wsgyme important
features on the more active molecules can be obderv
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Figure: 4. Loading plot for the thirteen variablesresponsible for the classification of the butane d&ates studied: | = ionization

potential; A = electron affinity; y = electron negativity; n = hardness; s = softness; 1 = chemical potentia = electrophilicity; ANmax =
an additional electronic charge from environment;AE, and AE. = nucleophilic and electrophilic capabilities of deaving group; all in
electron volts units
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Figure: 5. Dendrogram obtained for the thirty two butane derivates

Hierarchical Cluster Analysis (HCA)

Figure 5 shows HCA analysis of the present studiye fMorizontal lines represent the compounds andéhiecal
lines the similarity values between pairs of comms) a compound and a group of compounds and agrongs
of compounds. The number of clusters, similaritsels, distance levels, clusters of joined and nunob®@bserves
in the new cluster are presented in the Table. 3.
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Table: 3. the number of clusters, similarity levelsdistance levels, clusters of joined and number abserves in the new cluster

Step | Number of | Similarity | Distance | Clusters | Number of obs in new
clusters level level joined cluster
1 31 99.7159 0.03277 NB NC 2
2 30 99.622¢ 0.0435. | CE | DB 2
3 29 99.409! 0.0681. | BA | OA 2
4 28 99.2637 0.08494 CF CG 2
5 27 99.0835 0.10574 CA CB 2
6 26 98.8708 0.13024 BA BH 3
7 25 98.7419 0.145142 CA BA 5
8 24 97.986( 0.2323: | BF | BG 2
9 23 97.780:« 0.2560: | CF | BF 4
10 22 97.6648 0.26936 AB AC 2
11 21 97.6483 0.2712§ OC Op 2
12 20 97.5476 0.28284 CA OB 6
13 19 97.4886 0.2896§ CA OC 8
14 18 97.4748 0.29128 AA CA 9
15 17 97.473 0.2914( | AA | CF 13
16 16 97.3812 0.302090 CC BC 2
17 15 97.0979 0.33476 AA AR 15
18 14 97.0676 0.33825 EA NB 3
19 13 97.0546 0.33974 CC DA 3
20 12 96.6478 0.38667 AA CC 18
21 11 96.512( 0.4023. | 15 | YA 2
22 10 96.4484 0.40967 AA CE 20
23 9 94.6793 0.61374 AA CI 21
24 8 94.5440 0.62934 BL EB 2
25 7 94.0696 0.6840§ BD BE 4
26 6 93.9773 0.69471 BD EC 5
27 5 93.5916 0.73920 AA BLO 26
28 4 89.7598 1.1811§ AA NO 27
29 3 89.5417 1.20634 AA EA 30
30 2 88.8939 1.2810§ AA Ok 31
31 1 41.0702 6.79743 AA NA 32

From Figure 5, we can see that the HCA resultsvarg similar to those obtained with the PCA analysie. the
compounds studied were grouped into four groups.

CONCLUSION

The derivates of the butane were theoretically stigated with the density functional theory emphayiB3LYP
method with the 6-311+G (d,p) basis set. The oadestability of derivates was found to be butanaitrogen=
oxygerr hydroxyl group > chloro > bromo> chloro and bromith respect to absolute energies. From PCA results
we can see that PC1 alone is responsible for {haratton between more active and less active meecBC1>0 is
more reactive compounds, and PC1<0 for the lesgiveamolecules respectively. From the HCA resatts very
similar to those obtained with the PCA analysis.
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