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ABSTRACT

Study 3D-QSAR is applied to a set of 57 molecudsed on N-phenylsuccinimides using the principahgonent
analysis (PCA) method, the multiple linear regressinethod (MLR) and the artificial neural netwoANN). The
predicted values of activities are in good agreemeith the experimental results. The artificial maunetwork

(ANN) techniques, considering the relevant desoripbbtained from the MLR, showed a correlationficient of

0,9 with an 8-20-1 ANN model which is a good resAdta result of quantitative structure-activityagonships, we
found that the model proposed in this study is ttred of major descriptors used to describe thaséecules. The
obtained results suggested that proposed combimaticeveral calculated parameters could be ugafptedicting

biological activity of N-phenylsuccinimides derivass.
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INTRODUCTION

Various N-phenylsuccinimide derivatives are desdilin the prior art with broad antimicrobial proges in U.S.
Pat. No 3741981 (Chemistry Sure Chem. Open Betagsciibed components are antimicrobial N-
phenylsuccinimides possess a multisubstituted aiomacleus and an imid group which are also resjoba for a
good antifungal, antidepressant and anticulosevigctil]. 61 N-phenylsuccinimides with different Isstituting
benzene ring were determined against (Botrytis €airBC) as antifungal [2]. The great variety ofnaalis and
fungi of man and the abundance of chemical strastof these fungi potentially active, make it difft to assess
the exact relationship between a molecular familg a biological activity type. In fact, contrary some major
pharmacological domains for which innovation depsl@round the defined structural archetype, thatiom of
new molecules with antifungal activity most oftesea very different chemical structures.

A study was made of the N-phenylimides active i ieta-position. Before they approached this sttiahy tested
this substitution of compounds having the sameesérl and which interact in the same way as theiogous
imides, they are N-phenylsuccinimide -3 multisuistid on the phenyl group, and they have quanébti
analyzed the relationship between chemical stractund biological activity against B. Chinera. listhase, after
the application of the method of Hansch and Fujitdy the steric effect and lipophilicity are sificantly found for
modeling activity pdo.[1], Principal component analysis of the studidmves the existence of the Alkoxy
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compounds which gather in a well discerned fromkenthe other remaining compounds. The studied camgs
are distributed according to the shape and sitleeif radical.

The term structure-activity relationship (SAR) déses the relationship between chemical structme: lziological
activity for a series of compounds [3-7]. In Andbaxon terminology, we use the term structure-agtiélationship
or SAR. The term "SAR" actually covers differenpapaches, ranging from simple considerations oflarity or
diversity of molecules to establish mathematickdtrenships linking chemical structure to a meablaactivity.

The SAR qualitative (qualitative SAR or QSAR) arerided from non-continuous data, such as the poesen
absence of a property or activity of interest. Here are mathematical relationships quantitativiing the
chemical structure to biological activity for a issrof compounds, we will speak of quantitativeicture-activity
relationships [3]. Finally, as it is the case im awork, the term SAR-dimensional (three-dimensicR8IAR and 3D-
QSA) refers to methods linking spatially modeledethdimensional structure of compounds to otherpmmds
[8]. The three-dimensional properties have graguadlen considered since the late 1970’s with tleeofistatistical
techniques and the improved information technoltmpts. Among many other techniques DYLOMMS (Dynamic
Lattice-Oriented Molecular Modeling System, 1981daCoMFA (Comparative Molecular Field Analysis,
developed between 1983 and 1987) were two piorggaapproaches in 3D-QSAR. The latter uses statistica
correlation techniques to analyze the quantitatdlationship between the activity of a series ahpounds with a
specified alignment and their electronic properéird three-dimensional sterics.

In this work, we have relied on the same data-sasgied by Takayama et al. (1983) for N-phenylsuiatides (fig.
1) using several statistical tools: Principal Comguats Analysis (PCA), Multiple Linear RegressionlL{®) and
Artificial Neural Network (ANN) calculations. Thebgectives of this work are to develop predictiveABSmodels
for the toxicity of our studied molecules. On théhey hand, several quantum chemical methods anchtQua
chemistry calculations have been performed in otdestudy the molecular structure and electronigpprties
[9,10].The geometry as well as the nature of thedtecular orbital, HOMO (highest occupied molecuabital)
and LUMO (lowest unoccupied molecular orbital) mvalved in the properties of biological activity ofganic
compounds. The more relevant molecular propertiesevealculated. These properties are the highesipasd
molecular orbital energy (Bmo, the lowest unoccupied molecular orbital energyvs, energy gapAE, dipole
momenty, the total energy £ the activation energyFthe absorption maximuik,., and the factor of oscillation
f(so).

EXPERIMENTAL SECTION

Previous research [11] has developed a quantitatieglel of structure-activity relationships for ariee of
antifungal compound N-phenylsuccinimides. Furtherkion the electronic and steric aspects of 57 oubds was
produced by Boulaamail [12]. The following tableogls the chemical structures of the studied compsamd the

corresponding experimental activitieggpl
Y R
N 74
T
(0]

Fig.1: Chemical structure of studied phenylsuccinirides

The experimental toxicity of the studied compounds collected from previous work [11] (Table 1)eTtange of
toxicity data varies from 2,00 to 5,77.

Principal Components Analysis (ACP)

The structures of the molecules based on N-phecgilsimides, (1-57) were studied by statistical mdthbased on
the principal component analysis (PCA) [13-16] gsihe software XLSTAT 2009 and Mathlab software002a.
PCA is a statistical technique useful for summagziall the information encoded in the structuresthud
compounds. It is also very helpful for understagdime distribution of the compounds.

This is an essentially descriptive statistical médttwhich aims to present, in graphic form, the maxn of
information contained in the data table 1.
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Table 1: Observed toxicity of studied N-phenylsuceimide derivatives [11,12].

N° R plsc(obs.) N° R plsc(obs.)
1 H 3,6 30 4-Et 3,12
2 2-F 367 31 4-CK 371
3 2-Cl 345 32 4-OMe 2,76
4 2-Br 323 33 4-OEt 2,89
5 2-Me 2,7 34 4-NO, 3,84
6 2-Et 233 35 2,3-Cb 3,97
7 2-Ck 216 36 2,4-Ch 3,51
8 2-OMe 2,63 37 2,5-Cb 3,75
9 2-OEt 2 38 3,4-Cb 4,18
10 2-NG; 2,8 39 3,5-Cb 5,58
11 3-F 4,2 40 3,5-Bn, 5,77
12 3-Cl 435 41 3,4-Me 3,68
13 3-Br 421 42 3,4-(CR)2 4,77
14  3-Me 344 43  3,5-(OMe) 2,59
15 3-Et 3,05 44 3,5-(NOy)2 4,64
16  3-n-Pr 35 45 3-Cl,5-Me 4,78
17  3-n-Bu 355 46 3-Cl,5-Ck 5,12
18 3-Ck 356 47 3-OMe, 5-Cl 4,09
19 3-OMe 2,49 48 3-Cl, 5-COMe 3,54
20 3-OEt 3,18 49 3-Cl,5-COOMe 5,14

21 3-COEt 3,02 50 3-Cl,5-NG 5,19
22 3-CO-n-Pr 3,09 51 3-OMe, 5-NQ 3,81

23 3-COOMe 3,24 52 2,3,5-C} 4,89
24 3-NO, 3,71 53 2,4,5-C} 3,94
25 3-CN 3,77 54 3,4,5-C} 5,07
26 4-F 3,68 55 2-Me,3,5-C} 4,13
27 4-Cl 361 56 3,5-Ch4-Me 5,37
28 4-Br 3,58 57 3,5-Cb,4-F 4,97
29 4-Me 3,03

Multiple Linear Regressions (RLM)

The multiple linear regression statistic technigue@sed to study the relation between one dependeiable and
several independent variables. It is a mathematicrtique that minimizes differences between acndlpredicted
values. The multiple linear regression model (MIEj] was generated using the software SYSTAT, vardi2, to
predict antifungal activities gj. It has served also to select the descriptors asdtie input parameters for a back
propagation network (ANN).

Artificial Neural Network (ANN)
The ANN analysis was performed with the use of N&ddtsoftware v 2009a Neural Fitting tool (nftoadptbox on a
data set of phenylsuccinimide derivatives antifurgdvity [15-19].

A number of individual models of ANN were desigrmdlt up and trained. Generally the network wadthnfithree
layers; one input layer, one hidden layer and aripud layer were considered [20]. The input layaswonsisted of
eight artificial neurons of linear activation fuiwst (Fig. 2). The number of artificial neural inetthidden layer was
adjusted experimentally. The hidden layer consisted0 artificial neural. One neuron formed thepuatlayer of
sigmoid function activation. The architecture of pplied ANN models is presented in figure 3.

Input Laver Hidden Laver Output Layer

Fig. 2: Neuron Layout of ANN
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Hidden Layer Output Layer

[;]=>

Fig. 3: The ANN architecture.

Output

The data subjected to ANN analysis were randomlddd into three sets: a learning set, a validatenand a
testing set. Prior to that, the whole data setseated within the 0-1 range.

The set of N-phenylsuccinimides derivatives of famijal activity [10] were subjected to the ANN aysas. First,

for the learning set of compounds, i.e., 51 N-pl&mgcinimide derivatives were used. ANN models wagsigned,
built and trained. The learning set of data is use@NN to recognize the relationship between tigui and output
data. Then for the revision of the ANN model desijrand selected, the validation set of three comg®wvas
used. Testing set with three compounds was providede an independent evaluation of the ANN model
performance for the finally applied network.

In this study, we selected the sigmoid as a basistion [21]. The operation of the output layefigar, which is
given as below:

Y (X) = Zijhj (X) + by (1)
=

where yis the K" output layer unit for the input vector XyMs the weight connection between tHe dutput unit
and the J hidden layer unit andhis the bias that allows a transfer function “noneZegiven by the following
equation:

Bias= Y (y-) )

where y is the measured value a¥ds the value predicted by the model

The accuracy of the model was mainly evaluatedhgy root mean square error (RMSE). Formula is giaen
follows:

1o
RMSE= \/H z (pexp - ppred)2 (3)
i=1

where n is number of compounds,ds experimental value Ry is predicted value and summation is of overall
patterns in the analyzed data set [22,23]. Th@tscwere run on a personal PC.

DFT calculations

DFT (density functional theory) methods were usedhis study. These methods have become very popula
recent years because they can reach similar ppacisi other methods in less time and less cost ftoen
computational point of view. In agreement with DIET results, energy of the fundamental state aflggbectronic
system can be expressed through the total electdsrisity, and in fact, the use of electronic dgnsistead of
wave function for calculating the energy constisutbe fundamental base of DFT [24-26], using thé-\B3
functional [27,28] and a 6-31G (d) basis set. T3 ¥BP, a version of DFT method, uses Becke's thraemeter
functional (B3) and includes a mixture of HF wittFD exchange terms associated with the gradienectd
correlation functional of Lee, Yang and Parr (LYPhe geometry of all species under investigatios determined
by optimizing all geometrical variables without asymmetry constraints.

RESULTS AND DISCUSSION
Our study focused on a series of 57 derivativesQBAR N-phenylsuccinimides to determine a quantigati
relationship between structure and toxicity. Irsthéction we will use the same approach we alrbadg applied in

previous works [15,16].

Table 2 shows the values of the calculated paramets#ained from optimized structures by DFT/B3L&B1G (d)
optimized.
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Table 2: Values of the obtained parameters by DFT/BLYP 6-31G (d) optimization of the Studied compouns

Molecules  pko Er (Ua) Eromo(eV) Ewmo(eV) AE(V) p(D) Ea(eV) Amax(nm) f(so)

1 3,60 -591,7157 -6,5603 -0,5999 59604 1,4523 4,931251,4000 0,0014
2 3,67 -690,9459 -6,7274 -0,6462 6,0813 1,1461 4,5698/1,3100 0,0011
3 3,45 -1051,3064 -6,8900 -0,7077 6,1823 1,3898 494450,7500 0,0013
4 3,23 -3162,8171 -6,7838 -0,7102 6,0737 1,2111 4,94®50,9800 0,0012
5 2,70  -631,0320 -6,7010 -0,4861 6,2150 1,2511 4,904252,7900 0,0012
6 2,33 -670,3436 -6,6615 -0,4773 6,1842 1,3112 4,90(53,0100 0,0012
7 2,16  -928,7482 -7,0272 -1,0543 59729 11,7861 4,963349,8000 0,0019
8 2,63 -706,2355 -6,1526 -0,3333 58193 1,4790 4,902%2,9000 0,0017
9 2,00 -745,5537 -6,0246 -0,3526 56720 11,6693 4,832856,5600 0,0042
10 2,80 -796,2077 -7,2429 -2,4910 4,7519 3,5872 3,742331,2700 0,0084
11 4,20 -690,9483 -6,6389 -0,7344 59046 2,6065 4,93451,2500 0,0024
12 4,35 -1051,3107 -6,7062 -0,8272 58790 3,1054 907844,1200 0,0110
13 4,21 -3162,8194 -6,6065 -0,8267 57798 2,9881 473%61,8300 0,0012
14 3,44 -631,0338 -6,4317 -0,5571 58746  1,2406 4,928%1,5700 0,0018
15 3,05 -670,3475 -6,4426 -0,5612 58814 11,2961 4,167297,5100 0,0014
16 3,50 -709,6609 -6,4451 -0,5626 58825 11,3013 4,725%2,3700 0,0012
17 3,55 -748,9733 -6,4413 -0,5746 58667 11,3905 4,311287,6000 0,0005
18 3,56 -928,7524 -6,9513 -0,9827 59685 3,7494 4,74%1,5500 0,0013
19 2,49  -706,2377 -5,9862 -0,5228 54634 0,1011 4,653%66,4600 0,0024
20 3,18 -745,5570 -5,9484 -0,5122 54362 0,1627 4,74961,0400 0,0022
21 3,02 -783,6771 -6,7334 -1,5205 52129 4,4899 4,602269,4100 0,0201
22 3,09 -822,9907 -6,7187 -1,5164 52023 4,4091 3,677387,1900 0,0002
23 3,24 -819,5946 -6,7838 -1,2915 54923 1,4675 4,52657/3,9000 0,0013
24 3,71 -796,2157 -7,2255 -2,4488 4,7767  5,7305 3,7798,0600 0,0002
25 3,77 -683,9576 -7,1157 -1,5031 56126 5,7170 4,875%4,3100 0,0099
26 3,68 -690,9486 -6,5069 -0,7063 58005 2,8758 4,935451,2300 0,0012
27 3,61 -1051,3112 -6,5736 -0,8115 5,7621  3,5441 4,93451,2700 0,0012
28 3,58 -3162,8199 -6,4886 -0,8253 56633 3,4238 493251,3700 0,0013
29 3,03 -631,0339 -6,3242 -0,5528 57714 1,0102 4,927251,6400 0,0015
30 3,12 -670,3474 -6,3315 -0,5536 57779 1,0352 4,9275%1,6300 0,0015
31 3,71  -928,7528 -6,9921 -1,1194 58727 43977 4,933%1,3100 0,0016
32 2,76 -706,2385 -5,8773 -0,5174 53600 11,3790 4,72%%62,1500 0,0181
33 2,89  -745,5579 -5,8441 -0,5008 53433 1,2063 4,713%3,0200 0,0180
34 3,84 -796,2165 -7,2957 -2,4989 4,7968 6,7469  3,752330,4200 0,0004
35 3,97 -1510,8958 -7,0234 -0,9901 6,0334 2,8420 494850,5500 0,0008
36 3,51 -1510,9001 -7,0188 -1,0282 59906 2,6818 4,94@50,9800 0,0020
37 3,75 -1510,8998 -6,9042 -1,0519 58523 1,5840 #,94450,7400 0,0020
38 4,18 -1510,9010 -6,7225 -1,0641 5,6584 4,4349 471263,0900 0,0058
39 558 -1510,9040 -6,9510 -1,1276 5,8234 3,7466 4,68%64,6000 0,0072
40 577 -5733,4867 -6,9161 -1,3923 55239 39608 4864267,0700 0,0106
41 3,68 -670,3519 -6,3833 -0,5204 58629 11,0196 4,697%3,9500 0,0018
42 4,77 -1265,7876 -7,3205 -1,3634 59571 45359 4,731262,0600 0,0010
43 2,59 -820,7592 -5,6543 -0,4438 52105 11,3193 4,17&296,8500 0,0003
44 4,64 -1000,7102 -7,7919 -3,0748 4,7171  6,7519 35809B25,4600 0,0001
45 4,78 -1077,6114 -4,4445 1,4345 58790 3,8476 4,63087,7500 0,0020
46 512 -1388,3459 -7,0757 -1,2831 57926 4,1774 49651266,5200 0,0020
a7 4,09 -1165,8327 -6,2427 -0,7156 55271 1,9913 4,387282,6100 0,0003
48 3,54 -1203,7192 -7,0953 -2,0510 5,0444 6,6653 3594344,9000 0,0001
49 514 -1279,1886 -6,8884 -1,5755 53128 1,6278 4964%66,8700 0,0017
50 519 -1255,8079 -7,3257 -2,6849 4,6408 5,7606 3881319,3900 0,0005
51 3,81 -910,7385 -6,6640 -2,4039 4,2601 4,7508 3,935%815,0100 0,0003
52 4,89 -1970,4881 -7,0586 -1,3057 57529  2,6518 473461,8800 0,0090
53 3,94 -1970,4889 -7,0392 -1,2893 57499 2,9869 472962,1400 0,0075
54 5,07 -1970,4894 -6,9055 -1,2940 56116 4,8463 4,64®67,1800 0,0032
55 4,13 -1550,2198 -6,8271 -0,9879 58392 3,6619 4,69®64,3400 0,0041
56 5,37 -1550,2209 -6,7835 -0,9863 5,7973 2,9673 468864,4400 0,0037
57 4,97 -1610,1294 -6,9058 -1,0680 5,8378 4,7577 4,704263,5300 0,0008

Principal component analysis (Training Set Seleatjo

The selection of the training set is one of the nimportant steps in the QSAR modeling, since thadishment
and optimization of a QSAR model are based ontthising set. Predictability and applicability ofGSAR model
also depend on the training set selection. In plaig, PCA was applied to select a training set framong 57
compounds.

The set of descriptors encoding the 57 antifungadmounds and electronic and energetic parametersudmitted
to PCA analysis [13]. The first three principal sxare sufficient to describe the information preddy the data
matrix. Indeed, the percentages of variance a@546; 20,73% and 18,77% for the axes F1, F2 ana§j3ectively.
The total information is estimated to a percentaigfes,45%.
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The principal component analysis (PCA) [15,16,28swconducted to identify the link between the défe
variables. Bold values are different from 0 at gn#icance level of p=0,05. Correlations betweep #ight
descriptors are shown in table 3 as a correlatiatrimmand in figure 4 these descriptors are reprteskin a
correlation circle.

The Pearson correlation coefficients are summarirethe following table 3. The obtained matrix pides
information on the negative or positive correlatimtween variables.

Table 3: Correlation matrix (Pearson (n)) between iferent obtained descriptors

Variables  plso Er  Ehomo Eiuwmo AE u Ea Amax  f(s0)
p|5c 1
Er -0,486 1
Enowo  -0,331 0,187 1
Eiumo  -0,269 0,090 0,815 1
AE -0,059 -0,072 0,181 0,717 1
1] 0,494 -0,180 -0,537 -0,686 -0,519 1
Ea -0,065 -0,116 0,242 0,646 0,807 -0,530 1
Armax 0,045 0,124 -0,264 -0,6620,806 0,546 -0,997 1
f s -0,016 -0,107 0,105 0,013 -0,1030,005 0,159 -0,171 1
Bold values are different from 0 at a level sigrfit for p<0,05
At a very significant for p<0,01
At a highly significant to p<0,001

* The HOMO energ¥nowmo is positively correlated with the LUMO energywo (r=0,815 and p <0,05) at a significant level.
* The LUMO energ¥ umo is positively correlated with the gap eneddy (eV) (r=0,717 and p<0,05) and negatively correthtgith the dipole
momeny (r=0,686 and p<0,05) a significant level.
* The gap energylE (eV) is positively correlated with the activatienergyE, (r=0,807 and p<0,05) and negatively correlatediwihaximum
absorption ofimax (r=0,806 and p<0,05) at a significant level.
* The activation energi, is strongly correlated withnax for r=0,997 and p<0,001 at a high level.

Correlation circle

The principal component analysis (PCA) was alsofgpered to detect the connection between the differe
variables. The principal component analysis revettie correlation circle (Fig. 4) shows that theaiis appears to
represent the variable& (mo, Ea Amax) With some neighboring (83%, 75%, 77%) respecyivahd the F2 axis
seems to represent the varialpés, E7) with a few neighbors to 57%.

Variables{axes F1 et F2 : 66,68 %)

0,75

0,5

max

-0,5

s

-0,75 0,5 -0,25

0 0,25 0.5 0,75 1
F1 (45,95 %)

Fig. 4: Correlation circle

The Cartesian diagram (Fig. 5) allowed us to hgitlithe most toxic molecules along the toxicity sasind
molecules with heavAE along the gap energy axis.
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Fig. 5: Cartesian diagram according to F1 and F2: Grrelation between electronic parameters and indiduals (molecules)

Analysis of projections according to the plan F1{68,68% of the total variance) of the studied rooles (Fig. 6)
shows that the molecules are dispersed, accordinget structure of the R group of phenylsuccinimjda two
classes of compounds belonging to two regions:fittsé region contains a N-phenylsuccinimides atwady
mesomeric effect and the second one contains dpnoresmeric effect.

Obscrvations (axes FW‘%}

’ =0

Region1 : attracteur by

Region2 : donor by

-2 mesomeric effect mesmeric effect
3 Amax >300nm Amax< 300 nm
*E,<4deV *E,>deV
A *AE<5,20eV * AE > 5,20 eV
5 '
-0 -5 -4 -3 -2 -1 0 1 2 3 4 5

F1(45,95 %)

Fig. 6: Cartesian diagram according to F1 and F2: #ractor by mesomeric effect and donor by mesomerieffect both grouped in two
separate regions

Figure 6 shows a distribution of molecules in tvagions: the region 1 containing attractor motifahwiimax
>300nm, E<4 eV, AE<5, 20 eV) and the region 2 containing donor rsofifth (.. < 300nm, § > 4eV,AE >
5,20eV).

In this representation, the compouridsand 31 that should be in region 1 (attractor by mesomefiect) are an
exception because they contain R groups which@reimilar to those of other compounds of thiseseri

Multiple linear regressions
To establish quantitative relationships betweerictyxpls, and selected descriptors, our array data weressigaj
to a multiple linear and nonlinear regression. Osdiables whose coefficients are significant wettained.
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*Multiple linear regressions (MLR)

Many attempts have been made to develop a relingith the indicator variable of toxicity f| but the best
relationship obtained by this method is only onere&sponding to the linear combination of severalcdgtors: the
total energy E, energy Rowmo, €nergy Eumo, activation energy k& the dipole moment, absorption maximuri,ay
and factor of oscillationdo),

plso = 99,234 — 3,01.10E; — 0.296 Fomo + 9,514.1G ELymo + 0,318p —11,098 B 0,175hmax —
(4)
26,193 fso)

2 ity “
n = n wn n

observed toxicit

w

2,5 3 35 4 4,5 5 55 [
predictif toxicity

Fig. 7: Graphical representation of calculated anabserved toxicity by MLR

For our 57 compounds, the correlation between éxatal toxicity and calculated one based on thixleh is
quite significant (Fig. 7) as indicated by statiativalues:

N =57 R =0,759 R 0,575 RMSE = 0,617
The figure 7 shows a very regular distributionafitity values depending on the experimental values
*Multiple nonlinear regressions (MNLR)
We have also used the technique of nonlinear reigmesnodel to improve the structure-toxicity in aaqtitative

way, taking into account several parameters. Thihé most common tool for the study of multidimenal data.
The resulting equation is:

plso = 17069,097 — 3,776.1E; — 6,981 Fowo + 4,568 Euwo + 0,446 — 2608,975 § — 39,828
Amax + 54,8 fso)— 2,992.10 E;* — 0,206 Eiomo + 0,417 E yyo — 0,366AE*- 3,904.10° * + 148,35 (5)
E% + 3,454.10° Npax — 4965,923 f s

The obtained parameters describing the electraped of the studied molecules are:
N =57 R =0,812 *R 0,660 RMSE = 0,611

The toxicity value pj, predicted by this model is somewhat similar ta tiaserved. Figure 8 shows a very regular
distribution of toxicity values based on the observalues.

The obtained coefficient of correlation in equati@) is quite interesting (0,660). To optimize tagor standard
deviation and better finish building our model, iweolve in the next part artificial neural networf&NN).

As part of this conclusion, we can say that theicitk values obtained from nonlinear regression highly
correlated to that of the observed toxicity compguto results obtained by MLR method.

Artificial neural network (ANN)

In order to increase the probability of good chararzation of studied compounds, neural network ANan be
used to generate predictive models of quantitastreicture-activity relationships (QSAR) between et of
molecular descriptors obtained from the MLR andeobsd activity. The ANN calculated toxicity modekre
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developed using the properties of several studi@ehpounds. The correlation between ANN calculated an
experimental toxicity values is very significantiisstrated in figure 9 and as indicated by R &id/alues.

N =57 R =0,983 ’R 0,967 RMSE = 0,161

These values show that the relationship betweeresfienated values of gland their residues established by
artificial neural networks are illustrated in figutO.

°
a
55 ° //
° °e e
5 o o /
z °5
= °
2 45 /
3 °
; e ./ e® o
@ 4 [] // Y
c [
w [~ .'J’ o °
8 s o e LA
= e o o7
e e
3 .. : 7/. o
o o
Se
25
2.5 3 3.5 4 45 5 5.5
predictif toxicity

Fig. 8: Graphical representation of calculated andbserved toxicity by MNLR
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Fig. 9: Correlation between the calculated and expnental inhibition pl so
The statistic of the tree steps of the calculabipthe ANN: Training, validation and test are ithaded in table 4.

Table 4: Values obtained by ANN

Samples RMSE R R’

Training 51 0.0212 0.9870,972
Validation 3 0.234 0.9780,954
Test 3 0.450 0.7200,512

R: correlation coefficient; R determination coefficient; RMSE: root mean squamer.

The obtained squared correlation coefficierff) @lue is 0,967 for this data set of phenylsucenides. It confirms
that the artificial neural network results were best to build the quantitative structure activiélationship models.
In this part, we investigated the best linear QSAfression equations established in this studyedas this result,
a comparison of the quality of CPA, MLR and ANN retsishows that the ANN models have substantialtiebe
predictive capability because the ANN approach gibetter results than MLR. ANN was able to esthblbs
satisfactory relationship between the moleculacdp®rs and the activity of the studied compounds.
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Fig. 10: Relationship between the estimated values plso and their residues established by artificial neuranetworks
CONCLUSION

In this work we have investigated the QSAR regmssio predict toxicity of several compounds based o
phenylsuccinimides.

Comparison of key statistical terms like R drdt different models obtained by using differenttistical tools and
different descriptors has been shown in table 5.

The studies of the quality of the MLR and ANN madbhve shown that the ANN result have substanttzlyer
predictive capability than the other methods. WANN approach we have established a relationshipvdsst
several descriptors (Bvo, E.umo, -..) and toxicity in satisfactory manners.

Finally, we can conclude that studied descript®iso, ELumo, --.), Which are sufficiently rich in chemical and
electronic information to encode the structuraltdeas, may be used with other topological descripfor the
development of predictive QSAR models.

Table 5: Observed values and calculated of glaccording to different methods

N° R plsq(obs.) plsc(calc.)

MLR NMLR ANN
1 H 3,6 3,046 3,105 3,59
2 2-F 3,67 3,567 3,585 3,659
3 2-Cl 3,45 3,226 3,169 3,45
4 2-Br 3,23 3,784 35524 324
5 2-Me 2,7 3,108 2,862 2,727
6 2-Et 2,33 3,137 2,95 2,384
7 2-Ck 2,16 3,264 3,443 2,217
8 2-OMe 2,63 3,048 3,08 2,665
9 2-OEt 2 3,151 3,238 2,063
10 2-NG, 2,8 2,858 3,565 2,828
11 3-F 4,2 342 3,479 4,168
12 3-Cl 4,35 3,119 3,609 4,31
13 3-Br 4,21 4,662 451 4,176
14 3-Me 3,44 2,952 2906 3,47
15 3-Et 3,05 341 3,214 3,067
16 3-n-Pr 35 3,379 3,405 3,496
17 3-n-Bu 3,55 3,625 3,607 3,545
18 3-Ck 3,56 431 4,192 3,554
19 3-OMe 2,49 2,922 2,953 2,532
20 3-OEt 3,18 2,823 2,677 3,19
21 3-COEt 3,02 4,054 3,692 2,941
22 3-CO-n-Pr 3,09 2,975 2,623 3,106
23 3-COOMe 3,24 3,685 4,086 3,248
24 3-NO, 3,71 3,909 3,687 3,698
25 3-CN 3,77 4,404 4,308 3,755
26 4-F 3,68 35 3482 3,667
27 4-Cl 3,61 3,832 3,667 3,603
28 4-Br 3,58 4,406 4,336 3,574
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29 4-Me 3,03 2,858 2,837 3,061
30 4-Et 3,12 2,88 2,855 3,12
31 4-Ck 3,71 4,152 3,898 3,697
32 4-OMe 2,76 2,789 2,385 2,79
33 4-OEt 2,89 2,764 2,552 2,915
34 4-NO, 3,84 4,13 3,699 3,331
35 2,3-Ch 3,97 3,841 3,641 3,946
36 2,4-Ch 351 3,773 3,71 3,563
37 2,5-Ch 3,75 3,379 3,588 3,736
38 3,4-Cb 4,18 4549 4,729 4,412
39 3,5-Ch 5,58 4,389 4,59 5,484
40 3,5-Br 577 5,653 5,515 5,668
41 3,4-Me 3,68 3,284 3,255 3,667
42 3,4-(CR)2 4,77 4,755 4,541 4,711
43  3,5-(OMe) 2,59 3,282 2,884 2,627
44 3,5-(NGy)2 4,64 4,526 4,762 4,586
45 3-Cl,5-Me 4,78 399 469 4,725
46 3-Cl,5-Ck 512 4,687 4,769 5,045
47  3-OMe, 5-Cl 4,09 3,902 4,013 4,061

48 3-Cl, 5-COMe 3,54 3,435 3,635 3,536
49 3-Cl,5-COOMe 5,14 3,772 4,248 5,063
50 3-Cl, 5-NG 5,19 4,434 4,625 5,112
51 3-OMe, 5-NQ 3,81 4,011 3,753 3,791

52 2,3,5-C} 4,89 4,08 4,307 4,825
53 2,4,5-Ck 3,94 4,231 4,67 3,917
54 3,4,5-C} 5,07 5,004 5,081 4,997

55 2-Me,3,5-C} 4,13 4,425 4,408 5,138
56  3,5-Chb4-Me 5,37 4,205 4,431 5,283
57 3,5-Cb,4-F 4,97 4,876 4,602 4,902
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