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ABSTRACT  
 
Study 3D-QSAR is applied to a set of 57 molecules based on N-phenylsuccinimides using the principal component 
analysis (PCA) method, the multiple linear regression method (MLR) and the artificial neural network (ANN). The 
predicted values of activities are in good agreement with the experimental results. The artificial neural network 
(ANN) techniques, considering the relevant descriptors obtained from the MLR, showed a correlation coefficient of 
0,9 with an 8-20-1 ANN model which is a good result. As a result of quantitative structure-activity relationships, we 
found that the model proposed in this study is constituted of major descriptors used to describe these molecules. The 
obtained results suggested that proposed combination of several calculated parameters could be useful in predicting 
biological activity of N-phenylsuccinimides derivatives. 
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INTRODUCTION 

 
Various N-phenylsuccinimide derivatives are described in the prior art with broad antimicrobial properties in U.S. 
Pat. No 3741981 (Chemistry Sure Chem. Open Beta). Described components are antimicrobial N-
phenylsuccinimides possess a multisubstituted aromatic nucleus and an imid group which are also responsible for a 
good antifungal, antidepressant and anticulose activity [1]. 61 N-phenylsuccinimides with different substituting 
benzene ring were determined against (Botrytis Chinera BC) as antifungal [2]. The great variety of animals and 
fungi of man and the abundance of chemical structures of these fungi potentially active, make it difficult to assess 
the exact relationship between a molecular family and a biological activity type. In fact, contrary to some major 
pharmacological domains for which innovation develops around the defined structural archetype, the creation of 
new molecules with antifungal activity most often uses very different chemical structures. 
 
A study was made of the N-phenylimides active in the meta-position. Before they approached this study, they tested 
this substitution of compounds having the same skeleton and which interact in the same way as their analogous 
imides, they are N-phenylsuccinimide -3 multisubstituted on the phenyl group, and they have quantitatively 
analyzed the relationship between chemical structure and biological activity against B. Chinera. In this case, after 
the application of the method of Hansch and Fujita, only the steric effect and lipophilicity are significantly found for 
modeling activity pI50.[1], Principal component analysis of the studies shows the existence of the Alkoxy 
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compounds which gather in a well discerned from unlike the other remaining compounds. The studied compounds 
are distributed according to the shape and size of their radical. 
 
The term structure-activity relationship (SAR) describes the relationship between chemical structure and biological 
activity for a series of compounds [3-7]. In Anglo-Saxon terminology, we use the term structure-activity relationship 
or SAR. The term "SAR" actually covers different approaches, ranging from simple considerations of similarity or 
diversity of molecules to establish mathematical relationships linking chemical structure to a measurable activity. 
 
The SAR qualitative (qualitative SAR or QSAR) are derived from non-continuous data, such as the presence or 
absence of a property or activity of interest. If there are mathematical relationships quantitatively linking the 
chemical structure to biological activity for a series of compounds, we will speak of quantitative structure-activity 
relationships [3]. Finally, as it is the case in our work, the term SAR-dimensional (three-dimensional QSAR and 3D-
QSA) refers to methods linking spatially modeled three-dimensional structure of compounds to other compounds 
[8]. The three-dimensional properties have gradually been considered since the late 1970’s with the use of statistical 
techniques and the improved information technology tools. Among many other techniques DYLOMMS (Dynamic 
Lattice-Oriented Molecular Modeling System, 1981) and CoMFA (Comparative Molecular Field Analysis, 
developed between 1983 and 1987) were two pioneering approaches in 3D-QSAR. The latter uses statistical 
correlation techniques to analyze the quantitative relationship between the activity of a series of compounds with a 
specified alignment and their electronic properties and three-dimensional sterics. 
 
In this work, we have relied on the same data-base studied by Takayama et al. (1983) for N-phenylsuccinimides (fig. 
1) using several statistical tools: Principal Components Analysis (PCA), Multiple Linear Regression (MLR) and 
Artificial Neural Network (ANN) calculations. The objectives of this work are to develop predictive QSAR models 
for the toxicity of our studied molecules. On the other hand, several quantum chemical methods and Quantum-
chemistry calculations have been performed in order to study the molecular structure and electronic properties 
[9,10].The geometry as well as the nature of their molecular orbital, HOMO (highest occupied molecular orbital) 
and LUMO (lowest unoccupied molecular orbital) is involved in the properties of biological activity of organic 
compounds. The more relevant molecular properties were calculated. These properties are the highest occupied 
molecular orbital energy EHOMO, the lowest unoccupied molecular orbital energy ELUMO, energy gap ∆E, dipole 
moment µ, the total energy ET, the activation energy Ea, the absorption maximum λmax and the factor of oscillation 
f(SO). 
 

EXPERIMENTAL SECTION 
 

Previous research [11] has developed a quantitative model of structure-activity relationships for a series of 
antifungal compound N-phenylsuccinimides. Further work on the electronic and steric aspects of 57 molecules was 
produced by Boulaamail [12]. The following table shows the chemical structures of the studied compounds and the 
corresponding experimental activities pI50. 

 
Fig.1: Chemical structure of studied phenylsuccinimides 

 
The experimental toxicity of the studied compounds was collected from previous work [11] (Table 1). The range of 
toxicity data varies from 2,00 to 5,77. 
 
Principal Components Analysis (ACP) 
The structures of the molecules based on N-phenylsuccinimides, (1–57) were studied by statistical methods based on 
the principal component analysis (PCA) [13-16] using the software XLSTAT 2009 and Mathlab software v 2009a. 
PCA is a statistical technique useful for summarizing all the information encoded in the structures of the 
compounds. It is also very helpful for understanding the distribution of the compounds. 
 
This is an essentially descriptive statistical method which aims to present, in graphic form, the maximum of 
information contained in the data table 1. 
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Table 1: Observed toxicity of studied N-phenylsuccinimide derivatives [11,12]. 
 

N° R pI50(obs.) N° R pI50(obs.) 
1 H 3,6 30 4-Et 3,12 
2 2-F 3,67 31 4-CF3 3,71 
3 2-Cl 3,45 32 4-OMe 2,76 
4 2-Br 3,23 33 4-OEt 2,89 
5 2-Me 2,7 34 4-NO2 3,84 
6 2-Et 2,33 35 2,3-Cl2 3,97 
7 2-CF3 2,16 36 2,4-Cl2 3,51 
8 2-OMe 2,63 37 2,5-Cl2 3,75 
9 2-OEt 2 38 3,4-Cl2 4,18 
10 2-NO2 2,8 39 3,5-Cl2 5,58 
11 3-F 4,2 40 3,5-Br2 5,77 
12 3-Cl 4,35 41 3,4-Me2 3,68 
13 3-Br 4,21 42 3,4-(CF3)2 4,77 
14 3-Me 3,44 43 3,5-(OMe)2 2,59 
15 3-Et 3,05 44 3,5-(NO2)2 4,64 
16 3-n-Pr 3,5 45 3-Cl,5-Me 4,78 
17 3-n-Bu 3,55 46 3-Cl,5-CF3 5,12 
18 3-CF3 3,56 47 3-OMe, 5-Cl 4,09 
19 3-OMe 2,49 48 3-Cl, 5-COMe 3,54 
20 3-OEt 3,18 49 3-Cl, 5-COOMe 5,14 
21 3-COEt 3,02 50 3-Cl, 5-NO2 5,19 
22 3-CO-n-Pr 3,09 51 3-OMe, 5-NO2 3,81 
23 3-COOMe 3,24 52 2,3,5-Cl3 4,89 
24 3-NO2 3,71 53 2,4,5-Cl3 3,94 
25 3-CN 3,77 54 3,4,5-Cl3 5,07 
26 4-F 3,68 55 2-Me,3,5-Cl2 4,13 
27 4-Cl 3,61 56 3,5-Cl2,4-Me 5,37 
28 4-Br 3,58 57 3,5-Cl2,4-F 4,97 
29 4-Me 3,03    

 
Multiple Linear Regressions (RLM) 
The multiple linear regression statistic technique is used to study the relation between one dependent variable and 
several independent variables. It is a mathematic technique that minimizes differences between actual and predicted 
values. The multiple linear regression model (MLR) [15] was generated using the software SYSTAT, version 12, to 
predict antifungal activities pI50. It has served also to select the descriptors used as the input parameters for a back 
propagation network (ANN). 
 
Artificial Neural Network (ANN) 
The ANN analysis was performed with the use of Mathlab software v 2009a Neural Fitting tool (nftool) toolbox on a 
data set of phenylsuccinimide derivatives antifungal activity [15-19].  
 
A number of individual models of ANN were designed built up and trained. Generally the network was built of three 
layers; one input layer, one hidden layer and one output layer were considered [20]. The input layer was consisted of 
eight artificial neurons of linear activation function (Fig. 2). The number of artificial neural in the hidden layer was 
adjusted experimentally. The hidden layer consisted of 20 artificial neural. One neuron formed the output layer of 
sigmoid function activation. The architecture of the applied ANN models is presented in figure 3. 
 

 
 

Fig. 2: Neuron Layout of ANN 
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Fig. 3: The ANN architecture 
 

The data subjected to ANN analysis were randomly divided into three sets: a learning set, a validation set and a 
testing set. Prior to that, the whole data set was scaled within the 0-1 range.  
 
The set of N-phenylsuccinimides derivatives of antifungal activity [10] were subjected to the ANN analysis. First, 
for the learning set of compounds, i.e., 51 N-phenylsuccinimide derivatives were used. ANN models were designed, 
built and trained. The learning set of data is used in ANN to recognize the relationship between the input and output 
data. Then for the revision of the ANN model designed and selected, the validation set of three compounds was 
used. Testing set with three compounds was provided to be an independent evaluation of the ANN model 
performance for the finally applied network.  
 
In this study, we selected the sigmoid as a basis function [21]. The operation of the output layer is linear, which is 
given as below: 

∑
=
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kn

1j
kjkjk b(X)hw(X)y

 

(1) 

 
where yk is the kth output layer unit for the input vector X, wkj is the weight connection between the kth output unit 
and the jth hidden layer unit and bk is the bias that allows a transfer function “non-zero” given by the following 
equation:  
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where y is the measured value and 

−
y  is the value predicted by the model  

 
The accuracy of the model was mainly evaluated by the root mean square error (RMSE). Formula is given as 
follows: 
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where n is number of compounds, pexp is experimental value, ppred is predicted value and summation is of overall 
patterns in the analyzed data set [22,23]. The scripts were run on a personal PC. 
 
DFT calculations 
DFT (density functional theory) methods were used in this study. These methods have become very popular in 
recent years because they can reach similar precision to other methods in less time and less cost from the 
computational point of view. In agreement with the DFT results, energy of the fundamental state of a polyelectronic 
system can be expressed through the total electronic density, and in fact, the use of electronic density instead of 
wave function for calculating the energy constitutes the fundamental base of DFT [24-26], using the B3LYP 
functional [27,28] and a 6-31G (d) basis set. The B3LYP, a version of DFT method, uses Becke’s three-parameter 
functional (B3) and includes a mixture of HF with DFT exchange terms associated with the gradient corrected 
correlation functional of Lee, Yang and Parr (LYP). The geometry of all species under investigation was determined 
by optimizing all geometrical variables without any symmetry constraints. 
 

RESULTS AND DISCUSSION 
 

Our study focused on a series of 57 derivatives by QSAR N-phenylsuccinimides to determine a quantitative 
relationship between structure and toxicity. In this section we will use the same approach we already have applied in 
previous works [15,16]. 
 
Table 2 shows the values of the calculated parameters obtained from optimized structures by DFT/B3LYP 6-31G (d) 
optimized. 
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Table 2: Values of the obtained parameters by DFT/B3LYP 6-31G (d) optimization of the Studied compounds 
 

Molecules pI50 ET (Ua) EHOMO (eV) ELUMO (eV) ∆Ε ∆Ε ∆Ε ∆Ε (eV) µ µ µ µ (D) Ea (eV) λλλλmax (nm) f (SO) 
1 3,60 -591,7157 -6,5603 -0,5999 5,9604 1,4523 4,9317 251,4000 0,0014 
2 3,67 -690,9459 -6,7274 -0,6462 6,0813 1,1461 4,5698 271,3100 0,0011 
3 3,45 -1051,3064 -6,8900 -0,7077 6,1823 1,3898 4,9445 250,7500 0,0013 
4 3,23 -3162,8171 -6,7838 -0,7102 6,0737 1,2111 4,9401 250,9800 0,0012 
5 2,70 -631,0320 -6,7010 -0,4861 6,2150 1,2511 4,9047 252,7900 0,0012 
6 2,33 -670,3436 -6,6615 -0,4773 6,1842 1,3112 4,9004 253,0100 0,0012 
7 2,16 -928,7482 -7,0272 -1,0543 5,9729 1,7861 4,9633 249,8000 0,0019 
8 2,63 -706,2355 -6,1526 -0,3333 5,8193 1,4790 4,9025 252,9000 0,0017 
9 2,00 -745,5537 -6,0246 -0,3526 5,6720 1,6693 4,8326 256,5600 0,0042 
10 2,80 -796,2077 -7,2429 -2,4910 4,7519 3,5872 3,7427 331,2700 0,0084 
11 4,20 -690,9483 -6,6389 -0,7344 5,9046 2,6065 4,9347 251,2500 0,0024 
12 4,35 -1051,3107 -6,7062 -0,8272 5,8790 3,1054 5,0789 244,1200 0,0110 
13 4,21 -3162,8194 -6,6065 -0,8267 5,7798 2,9881 4,7353 261,8300 0,0012 
14 3,44 -631,0338 -6,4317 -0,5571 5,8746 1,2406 4,9285 251,5700 0,0018 
15 3,05 -670,3475 -6,4426 -0,5612 5,8814 1,2961 4,1674 297,5100 0,0014 
16 3,50 -709,6609 -6,4451 -0,5626 5,8825 1,3013 4,7255 262,3700 0,0012 
17 3,55 -748,9733 -6,4413 -0,5746 5,8667 1,3905 4,3110 287,6000 0,0005 
18 3,56 -928,7524 -6,9513 -0,9827 5,9685 3,7494 4,7403 261,5500 0,0013 
19 2,49 -706,2377 -5,9862 -0,5228 5,4634 0,1011 4,6530 266,4600 0,0024 
20 3,18 -745,5570 -5,9484 -0,5122 5,4362 0,1627 4,7497 261,0400 0,0022 
21 3,02 -783,6771 -6,7334 -1,5205 5,2129 4,4899 4,6021 269,4100 0,0201 
22 3,09 -822,9907 -6,7187 -1,5164 5,2023 4,4091 3,6770 337,1900 0,0002 
23 3,24 -819,5946 -6,7838 -1,2915 5,4923 1,4675 4,5266 273,9000 0,0013 
24 3,71 -796,2157 -7,2255 -2,4488 4,7767 5,7305 3,7793 328,0600 0,0002 
25 3,77 -683,9576 -7,1157 -1,5031 5,6126 5,7170 4,8753 254,3100 0,0099 
26 3,68 -690,9486 -6,5069 -0,7063 5,8005 2,8758 4,9351 251,2300 0,0012 
27 3,61 -1051,3112 -6,5736 -0,8115 5,7621 3,5441 4,9344 251,2700 0,0012 
28 3,58 -3162,8199 -6,4886 -0,8253 5,6633 3,4238 4,9323 251,3700 0,0013 
29 3,03 -631,0339 -6,3242 -0,5528 5,7714 1,0102 4,9271 251,6400 0,0015 
30 3,12 -670,3474 -6,3315 -0,5536 5,7779 1,0352 4,9273 251,6300 0,0015 
31 3,71 -928,7528 -6,9921 -1,1194 5,8727 4,3977 4,9336 251,3100 0,0016 
32 2,76 -706,2385 -5,8773 -0,5174 5,3600 1,3790 4,7296 262,1500 0,0181 
33 2,89 -745,5579 -5,8441 -0,5008 5,3433 1,2063 4,7138 263,0200 0,0180 
34 3,84 -796,2165 -7,2957 -2,4989 4,7968 6,7469 3,7523 330,4200 0,0004 
35 3,97 -1510,8958 -7,0234 -0,9901 6,0334 2,8420 4,9486 250,5500 0,0008 
36 3,51 -1510,9001 -7,0188 -1,0282 5,9906 2,6818 4,9401 250,9800 0,0020 
37 3,75 -1510,8998 -6,9042 -1,0519 5,8523 1,5840 4,9447 250,7400 0,0020 
38 4,18 -1510,9010 -6,7225 -1,0641 5,6584 4,4349 4,7125 263,0900 0,0058 
39 5,58 -1510,9040 -6,9510 -1,1276 5,8234 3,7466 4,6857 264,6000 0,0072 
40 5,77 -5733,4867 -6,9161 -1,3923 5,5239 3,9608 4,6423 267,0700 0,0106 
41 3,68 -670,3519 -6,3833 -0,5204 5,8629 1,0196 4,6973 263,9500 0,0018 
42 4,77 -1265,7876 -7,3205 -1,3634 5,9571 4,5359 4,7311 262,0600 0,0010 
43 2,59 -820,7592 -5,6543 -0,4438 5,2105 1,3193 4,1767 296,8500 0,0003 
44 4,64 -1000,7102 -7,7919 -3,0748 4,7171 6,7519 3,8095 325,4600 0,0001 
45 4,78 -1077,6114 -4,4445 1,4345 5,8790 3,8476 4,6306 267,7500 0,0020 
46 5,12 -1388,3459 -7,0757 -1,2831 5,7926 4,1774 4,6519 266,5200 0,0020 
47 4,09 -1165,8327 -6,2427 -0,7156 5,5271 1,9913 4,3871 282,6100 0,0003 
48 3,54 -1203,7192 -7,0953 -2,0510 5,0444 6,6653 3,5948 344,9000 0,0001 
49 5,14 -1279,1886 -6,8884 -1,5755 5,3128 1,6278 4,6459 266,8700 0,0017 
50 5,19 -1255,8079 -7,3257 -2,6849 4,6408 5,7606 3,8818 319,3900 0,0005 
51 3,81 -910,7385 -6,6640 -2,4039 4,2601 4,7508 3,9359 315,0100 0,0003 
52 4,89 -1970,4881 -7,0586 -1,3057 5,7529 2,6518 4,7345 261,8800 0,0090 
53 3,94 -1970,4889 -7,0392 -1,2893 5,7499 2,9869 4,7296 262,1400 0,0075 
54 5,07 -1970,4894 -6,9055 -1,2940 5,6116 4,8463 4,6404 267,1800 0,0032 
55 4,13 -1550,2198 -6,8271 -0,9879 5,8392 3,6619 4,6904 264,3400 0,0041 
56 5,37 -1550,2209 -6,7835 -0,9863 5,7973 2,9673 4,6885 264,4400 0,0037 
57 4,97 -1610,1294 -6,9058 -1,0680 5,8378 4,7577 4,7047 263,5300 0,0008 

 
Principal component analysis (Training Set Selection) 
The selection of the training set is one of the most important steps in the QSAR modeling, since the establishment 
and optimization of a QSAR model are based on this training set. Predictability and applicability of a QSAR model 
also depend on the training set selection. In this part, PCA was applied to select a training set from among 57 
compounds.  
 
The set of descriptors encoding the 57 antifungal compounds and electronic and energetic parameters are submitted 
to PCA analysis [13]. The first three principal axes are sufficient to describe the information provided by the data 
matrix. Indeed, the percentages of variance are 45,95%; 20,73% and 18,77% for the axes F1, F2 and F3 respectively. 
The total information is estimated to a percentage of 85,45%. 
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The principal component analysis (PCA) [15,16,28] was conducted to identify the link between the different 
variables. Bold values are different from 0 at a significance level of p=0,05. Correlations between the eight 
descriptors are shown in table 3 as a correlation matrix and in figure 4 these descriptors are represented in a 
correlation circle. 
 
The Pearson correlation coefficients are summarized in the following table 3. The obtained matrix provides 
information on the negative or positive correlation between variables. 
 

Table 3: Correlation matrix (Pearson (n)) between different obtained descriptors 
 

Variables pI 50 ET EHOMO  ELUMO  ∆∆∆∆E µµµµ    Ea λλλλmax f (SO) 
pI 50 1         
ET -0,486 1        
EHOMO  -0,331 0,187 1       
ELUMO  -0,269 0,090 0,815 1      
∆∆∆∆E -0,059 -0,072 0,181 0,717 1     
µµµµ    0,494 -0,180 -0,537 -0,686 -0,519 1    
Ea -0,065 -0,116 0,242 0,646 0,807 -0,530 1   
λλλλmax 0,045 0,124 -0,264 -0,662 -0,806 0,546 -0,997 1  
f (SO) -0,016 -0,107 0,105 0,013 -0,103 0,005 0,159 -0,171 1 

 
Bold values are different from 0 at a level significant for p<0,05 

At a very significant for p<0,01 
At a highly significant to p<0,001 

 
* The HOMO energy EHOMO  is positively correlated with the LUMO energy ELUMO  (r=0,815 and p <0,05) at a 
significant level. 
* The LUMO energy ELUMO  is positively correlated with the gap energy ∆∆∆∆E (eV) (r=0,717 and p<0,05) and 
negatively correlated with the dipole moment µ (r=0,686 and p<0,05) a significant level. 
* The gap energy ∆∆∆∆E (eV) is positively correlated with the activation energy Ea (r=0,807 and p<0,05) and negatively 
correlated with maximum absorption of λmax (r=0,806 and p<0,05) at a significant level. 
* The activation energy Ea is strongly correlated with λmax for r=0,997 and p<0,001 at a high level. 
 
Correlation circle 
The principal component analysis (PCA) was also performed to detect the connection between the different 
variables. The principal component analysis revealed the correlation circle (Fig. 4) shows that the F1 axis appears to 
represent the variables (ELUMO , Ea, λmax) with some neighboring (83%, 75%, 77%) respectively, and the F2 axis 
seems to represent the variable (pI50, ET) with a few neighbors to 57%. 
 

 
 

Fig. 4: Correlation circle 
 

The Cartesian diagram (Fig. 5) allowed us to highlight the most toxic molecules along the toxicity axis and 
molecules with heavy ∆∆∆∆E along the gap energy axis. 
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Fig. 5: Cartesian diagram according to F1 and F2: Correlation between electronic parameters and individuals (molecules) 
 

Analysis of projections according to the plan F1-F2 (66,68% of the total variance) of the studied molecules (Fig. 6) 
shows that the molecules are dispersed, according to the structure of the R group of phenylsuccinimides, in two 
classes of compounds belonging to two regions: the first region contains a N-phenylsuccinimides attractor by 
mesomeric effect and the second one contains donor by mesmeric effect. 
 

 
 

Fig. 6: Cartesian diagram according to F1 and F2: attractor by mesomeric effect and donor by mesomeric effect both grouped in two 
separate regions 

 
Figure 6 shows a distribution of molecules in two regions: the region 1 containing attractor motifs with (λmax 

>300nm, Ea<4 eV, ∆E<5, 20 eV) and the region 2 containing donor motifs with (λmax < 300nm, Ea > 4eV, ∆E > 
5,20eV).  
 
In this representation, the compounds 18 and 31 that should be in region 1 (attractor by mesomeric effect) are an 
exception because they contain R groups which are not similar to those of other compounds of this series. 
 
Multiple linear regressions  
To establish quantitative relationships between toxicity pI50 and selected descriptors, our array data were subjected 
to a multiple linear and nonlinear regression. Only variables whose coefficients are significant were retained. 
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*Multiple linear regressions (MLR) 
Many attempts have been made to develop a relationship with the indicator variable of toxicity pI50, but the best 
relationship obtained by this method is only one corresponding to the linear combination of several descriptors: the 
total energy ET, energy EHOMO, energy ELUMO, activation energy Ea, the dipole moment µ, absorption maximum λmax 
and factor of oscillation f(SO). 
 
pI50 = 99,234 – 3,01.10-4 ET – 0.296 EHOMO  + 9,514.10-2 ELUMO  + 0,318 µµµµ – 11,098 Ea– 0,175 λmax – 
26,193 f(SO)  

(4) 

 

 
 

Fig. 7: Graphical representation of calculated and observed toxicity by MLR 
 

For our 57 compounds, the correlation between experimental toxicity and calculated one based on this model is 
quite significant (Fig. 7) as indicated by statistical values: 
 
N = 57             R = 0,759             R2 = 0,575            RMSE = 0,617 

 
The figure 7 shows a very regular distribution of toxicity values depending on the experimental values. 
 
*Multiple nonlinear regressions (MNLR) 
We have also used the technique of nonlinear regression model to improve the structure-toxicity in a quantitative 
way, taking into account several parameters. This is the most common tool for the study of multidimensional data. 
The resulting equation is: 
 
pI50 = 17069,097 – 3,776.10-4 ET – 6,981 EHOMO  + 4,568 ELUMO  + 0,446 µµµµ – 2608,975 Ea – 39,828 λλλλmax + 54,8 
f(SO) – 2,992.10-8 ET

2 – 0,206 E2HOMO  + 0,417 E2
LUMO  – 0,366 ∆∆∆∆E2– 3,904.10-2 µµµµ2 + 148,35 E2a + 3,454.10-2 

λλλλ2
max – 4965,923 f 2(SO) 

(5) 

 
The obtained parameters describing the electronic aspect of the studied molecules are: 
 
N = 57              R = 0,812             R2 = 0,660              RMSE = 0,611 
 
The toxicity value pI50 predicted by this model is somewhat similar to that observed. Figure 8 shows a very regular 
distribution of toxicity values based on the observed values. 
 
The obtained coefficient of correlation in equation (5) is quite interesting (0,660). To optimize the error standard 
deviation and better finish building our model, we involve in the next part artificial neural networks (ANN). 
 
As part of this conclusion, we can say that the toxicity values obtained from nonlinear regression are highly 
correlated to that of the observed toxicity comparing to results obtained by MLR method. 
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Fig. 8: Graphical representation of calculated and observed toxicity by MNLR 
 

 
Artificial neural network (ANN) 
In order to increase the probability of good characterization of studied compounds, neural network (ANN) can be 
used to generate predictive models of quantitative structure-activity relationships (QSAR) between a set of 
molecular descriptors obtained from the MLR and observed activity. The ANN calculated toxicity model were 
developed using the properties of several studied compounds. The correlation between ANN calculated and 
experimental toxicity values is very significant as illustrated in figure 9 and as indicated by R and R2 values. 

 
N = 57             R = 0,983            R2 = 0,967            RMSE = 0,161 

 
These values show that the relationship between the estimated values of pI50 and their residues established by 
artificial neural networks are illustrated in figure 10.  
 

 
 

Fig. 9: Correlation between the calculated and experimental inhibition pI 50 
 

The statistic of the tree steps of the calculation by the ANN: Training, validation and test are illustrated in table 4. 
 

Table 4: Values obtained by ANN 
 

 Samples RMSE R R2 
Training 51 0.0212 0.987 0,972 
Validation 3 0.234 0.978 0,954 
Test 3 0.450 0.720 0,512 

 
R: correlation coefficient; R2: determination coefficient; RMSE: root mean square error. 
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Fig. 10: Relationship between the estimated values of pI50 and their residues established by artificial neural networks 

 
The obtained squared correlation coefficient (R2) value is 0,967 for this data set of phenylsuccinimides. It confirms 
that the artificial neural network results were the best to build the quantitative structure activity relationship models. 
In this part, we investigated the best linear QSAR regression equations established in this study. Based on this result, 
a comparison of the quality of CPA, MLR and ANN models shows that the ANN models have substantially better 
predictive capability because the ANN approach gives better results than MLR. ANN was able to establish a 
satisfactory relationship between the molecular descriptors and the activity of the studied compounds. 

 
CONCLUSION 

 
In this work we have investigated the QSAR regression to predict toxicity of several compounds based on 
phenylsuccinimides.  
 
Comparison of key statistical terms like R or R2 of different models obtained by using different statistical tools and 
different descriptors has been shown in table 5. 
 
The studies of the quality of the MLR and ANN models have shown that the ANN result have substantially better 
predictive capability than the other methods. With ANN approach we have established a relationship between 
several descriptors (EHOMO, ELUMO, …) and toxicity in satisfactory manners.  
 
Finally, we can conclude that studied descriptors (EHOMO, ELUMO, …), which are sufficiently rich in chemical and 
electronic information to encode the structural features, may be used with other topological descriptors for the 
development of predictive QSAR models.  
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Table 5: Observed values and calculated of pI50 according to different methods 
 

N° R pI50(obs.) pI 50(calc.) 
   MLR NMLR  ANN 
1 H 3,6 3,046 3,105 3,59 
2 2-F 3,67 3,567 3,585 3,659 
3 2-Cl 3,45 3,226 3,169 3,45 
4 2-Br 3,23 3,784 3,524 3,24 
5 2-Me 2,7 3,108 2,862 2,727 
6 2-Et 2,33 3,137 2,95 2,384 
7 2-CF3 2,16 3,264 3,443 2,217 
8 2-OMe 2,63 3,048 3,08 2,665 
9 2-OEt 2 3,151 3,238 2,063 
10 2-NO2 2,8 2,858 3,565 2,828 
11 3-F 4,2 3,42 3,479 4,168 
12 3-Cl 4,35 3,119 3,609 4,31 
13 3-Br 4,21 4,662 4,51 4,176 
14 3-Me 3,44 2,952 2,906 3,47 
15 3-Et 3,05 3,41 3,214 3,067 
16 3-n-Pr 3,5 3,379 3,405 3,496 
17 3-n-Bu 3,55 3,625 3,607 3,545 
18 3-CF3 3,56 4,31 4,192 3,554 
19 3-OMe 2,49 2,922 2,953 2,532 
20 3-OEt 3,18 2,823 2,677 3,19 
21 3-COEt 3,02 4,054 3,692 2,941 
22 3-CO-n-Pr 3,09 2,975 2,623 3,106 
23 3-COOMe 3,24 3,685 4,086 3,248 
24 3-NO2 3,71 3,909 3,687 3,698 
25 3-CN 3,77 4,404 4,308 3,755 
26 4-F 3,68 3,5 3,482 3,667 
27 4-Cl 3,61 3,832 3,667 3,603 
28 4-Br 3,58 4,406 4,336 3,574 
29 4-Me 3,03 2,858 2,837 3,061 
30 4-Et 3,12 2,88 2,855 3,12 
31 4-CF3 3,71 4,152 3,898 3,697 
32 4-OMe 2,76 2,789 2,385 2,79 
33 4-OEt 2,89 2,764 2,552 2,915 
34 4-NO2 3,84 4,13 3,699 3,331 
35 2,3-Cl2 3,97 3,841 3,641 3,946 
36 2,4-Cl2 3,51 3,773 3,71 3,563 
37 2,5-Cl2 3,75 3,379 3,588 3,736 
38 3,4-Cl2 4,18 4,549 4,729 4,412 
39 3,5-Cl2 5,58 4,389 4,59 5,484 
40 3,5-Br2 5,77 5,653 5,515 5,668 
41 3,4-Me2 3,68 3,284 3,255 3,667 
42 3,4-(CF3)2 4,77 4,755 4,541 4,711 
43 3,5-(OMe)2 2,59 3,282 2,884 2,627 
44 3,5-(NO2)2 4,64 4,526 4,762 4,586 
45 3-Cl,5-Me 4,78 3,99 4,69 4,725 
46 3-Cl,5-CF3 5,12 4,687 4,769 5,045 
47 3-OMe, 5-Cl 4,09 3,902 4,013 4,061 
48 3-Cl, 5-COMe 3,54 3,435 3,635 3,536 
49 3-Cl, 5-COOMe 5,14 3,772 4,248 5,063 
50 3-Cl, 5-NO2 5,19 4,434 4,625 5,112 
51 3-OMe, 5-NO2 3,81 4,011 3,753 3,791 
52 2,3,5-Cl3 4,89 4,08 4,307 4,825 
53 2,4,5-Cl3 3,94 4,231 4,67 3,917 
54 3,4,5-Cl3 5,07 5,004 5,081 4,997 
55 2-Me,3,5-Cl2 4,13 4,425 4,408 5,138 
56 3,5-Cl2,4-Me 5,37 4,205 4,431 5,283 
57 3,5-Cl2,4-F 4,97 4,876 4,602 4,902 
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