Cluj-Ilmenau index of hexagonal trapezoid system $\mathrm{T}_{\mathrm{b}, \mathrm{a}}$ and triangular benzenoid \mathbf{G}_{n}

Mohammad Reza Farahani ${ }^{1 *}$, M. R. Rajesh Kanna ${ }^{2}$ and R. Pradeep Kumar ${ }^{3}$
${ }^{1}$ Department of Applied Mathematics, Iran University of Science and Technology (IUST) Narmak, Tehran, Iran
${ }^{2}$ Department of Mathematics, Maharani's Science College for Women, Mysore, India
${ }^{3}$ Department of Mathematics, The National Institute of Engineering, Mysuru, India

Abstract

Let $G(V, E)$ be a connected molecular graph without multiple edges and loops, with the vertex set $V(G)$ and edge set $E(G)$, and vertices/atoms $x, y \in V(G)$ and an edge/bond $x y \in E(G)$. Let $m(G, c)$ be the number of qoc strips of length c (i.e. the number of cut-off edges) in the graph G. The Omega Polynomial $\Omega(G, x)$ and the Cluj-Ilmenau index $C I(G)$ for counting qoc strips in G were defined by M.V. Diudea as $\Omega(G, x)=\sum_{c} m(G, c) \mathrm{x}^{c}$ and $C I(G)=\left[\Omega(G, x)^{, 2}\right.$ $\Omega(G, x)^{\prime}-\Omega(G, x) " j_{x=1}$, respectively. In this paper, we compute an exact formula of these counting topological polynomial and its index for the Benzenoid molecular graphs "Hexagonal Trapezoid system $T_{b, a}$ and Triangular

 Benzenoid $G_{n} "$.Keywords: Omega polynomial $\Omega(\mathrm{G}, \mathrm{x})$, Cluj-Ilmenau index $\mathrm{CI}(\mathrm{G})$, Molecular graph, Hexagonal Trapezoid system.

INTRODUCTION

Let $G(V, E)$ be a connected molecular graph without multiple edges and loops, with the vertex set $V(G)$ and edge set $E(G)$. In this paper, our notations are standard and mainly taken from [1-3]. A topological index is a numerical value associated with chemical constitution purporting for correlation of chemical structure properties, chemical reactivity or biological activity.

Usage of topological indices in chemistry began in 1947 when chemist Harold Wiener developed the most widely known topological descriptor, Wiener index [4] and is defined as
$W(G)=\frac{1}{2} \sum_{u \in V} \sum_{(G)} \sum_{v \in V(G)} d(u, v)$
where the distance $d(u, v)$ between two vertices u and v is the number of edges in a shortest path connecting them. In a connected graph $G(V, E)$, with the vertex set $V(G)$ and edge set $E(G)$, two edges $e=u v$ and $f=x y$ of G are called co-distant e cof if they the following relation [5, 6]:
$d(v, x)=d(v, y)+l=d(u, x)+l=d(u, y)$
which is reflexive, that is, e co e holds for any edge e of G, and symmetric, i.e., if $e \operatorname{cof}$ then f co e but, in general, relation $c o$ is not transitive. If "co" is also transitive, thus an equivalence relation, then G is called a co-graph and the set of edges $C(e):=\{f \in E(G) \mid e$ co $f\})$ is called an orthogonal cut oc of $G, E(G)$ being the union of disjoint orthogonal cuts:
$E(G)=\mathrm{C}_{1} \cup \mathrm{C}_{2} \cup \ldots \cup \mathrm{C}_{k-1} \cup \mathrm{C}_{k}$ and $\mathrm{C}_{1} \cap \mathrm{C}_{j}=\varnothing . i \neq j$.
Klavžar [7] has shown that relation co is a theta Djoković [8], and Winkler [9] relation. Two edges e and f of a plane graph G are in relation opposite, e op f, if they are opposite edges of an inner face of G. Note that the relation co is defined in the whole graph while $o p$ is defined only in faces/rings. Using the relation $o p$ the edge set of G can be partitioned into opposite edge strips, ops. An ops is a quasi-orthogonal cut qoc, since $o p$ is, in general, not transitive. In co-graphs, the two strips superimpose to each other, then $C_{k}=S_{k}$ for any integer k.

The Omega Polynomial $\Omega(G, x)$ was defined by M.V. Diudea on the ground of quasi-orthogonal cut "qoc" edge strips [10]. Denote by $m(G, c)$ the number of ops of length $c=\left|C_{k}\right|$ and the Omega polynomial is equal to [10-32]:
$\Omega(G, x)=\sum_{c} m(G, c) \mathrm{x}^{c}$

The summation runs up to the maximum length of qoc strips in G. The first derivative (in $x=1$) equals the number of edges in the graph.
$\Omega(G, 1)^{\prime}=\sum_{c} \mathrm{~m}(\mathrm{G}, c) \times c=|\mathrm{E}(\mathrm{G})|$

Recently, the Cluj-Ilmenau $C I(G)$ of a molecular graph G was defined by M.V. Diudea [23] as:
$C I(G)=\left[\Omega(G, x)^{\prime 2}-\Omega(G, x)^{\prime}-\Omega(G, x) "\right]_{x=1}$.
In this study we compute an exact formula of these counting topological polynomial and its index for the Benzenoid molecular graphs "Hexagonal Trapezoid system $\mathrm{T}_{\mathrm{b}, \mathrm{a}}$ and Triangular Benzenoid G_{n} ($\forall a, b, n \in \mathbb{N}-\{1\}$, see their structures in Figure 1). Here, we compute the Cluj-Ilmenau index of molecular graphs by using Cut Method and Orthogonal Cut Method. Cut and Orthogonal Cut Methods and their general form were studied by S. Klavžar [33] and P.E. John et.al [34], respectively.

THE CLUJ-ILMENAU INDEX OF "HEXAGONAL TRAPEZOID SYSTEM TB,A"

In this section, we compute the Cluj-Ilmenau index of Benzenoid molecular graph "Hexagonal Trapezoid system $\mathrm{T}_{\mathrm{b}, \mathrm{a}} "\left(\forall a \geq b \in \mathbb{N}_{-}\{1\}\right)$ by using Cut Method. A hexagonal Trapezoid system $T_{b, a}$ is a hexagonal system consisting $a-b+1$ rows of the Benzenoid chain in which every row has exactly one hexagon less than the immediate row. Reader can see general representation of this family in Figure 1 and Reference [31, 35-37].

Figure 1. The general representations of this family of the Benzenoid molecular graphs "Hexagonal Trapezoid system $\mathrm{T}_{\mathrm{b}, \mathrm{a}}$ " ($\left.\forall a, b \in N-\{1\}\right)$
Theorem 1 [36]: The Omega polynomial of the Hexagonal Trapezoid System $T_{b, a}(\forall a \geq b \in \mathbb{N}-\{1\})$ is equal to :
$\Omega\left(T_{b, a}, x\right)=\sum_{i=1}^{a-b+1} \mathrm{x}^{a+2-i}+\sum_{i=1}^{a-b} 2 \mathrm{x}^{i+1}+2 b x^{a-b+2}$

Theorem 2. The Cluj-Ilmenau index of the Hexagonal Trapezoid System $T_{b, a}(\forall a \geq b \in N-\{1\})$ is as follows:
$C I\left(T_{b, a}\right)=1 / 4\left(9 a^{4}+9 b^{4}+18 a^{2} b^{2}+50 a^{3}+10 b^{3}+6 a^{2} b-46 a b^{2}+75 a^{2}+11 b^{2}+10 a b+10 a+6 b-16\right]$
Proof of Theorem 2. Consider the Hexagonal Trapezoid System $T_{b, a}$ for all $a, b \in \mathbb{N}-\{1\}$, with $a^{2}-b^{2}+4 a+2$ $\left(=2 a+1+\sum_{i=2 b+1}^{2 a+1} i\right)$ the number of vertices and $2 a+\sum_{i=3 b+1}^{3 a+1} i=1 / 2\left[3\left(a^{2}-b^{2}\right)+9 a+b+2\right]$ the number of edges. Also, from Theorem 1, one can see that

$$
\begin{aligned}
& \Omega^{\prime}\left(T_{b, a} x\right)=\left[x^{a-b+2}+x^{a-b+1}+\ldots+x^{a+1}+x^{a}+2 x^{2}+2 x^{3}+\ldots+2 x^{a-b+1}+2 b x^{a-b+2}\right] \\
& =\left[\sum_{i=1}^{a-b+1}(a+2-i) \mathrm{x}^{a-i+1}+\sum_{i=1}^{a-b} 2(i+1) \mathrm{x}^{i}+2(a-b+2) b x^{a-b+1}\right]
\end{aligned}
$$

And

$$
\begin{aligned}
& \Omega^{\prime \prime}\left(T_{b, a} x\right)=\frac{\partial}{\partial x}\left(\sum_{i=1}^{a-b+1} \mathrm{x}^{a+2-i}+\sum_{i=1}^{a-b} 2 \mathrm{x}^{i+1}+2 b x^{a-b+2}\right) \\
& =\left[\sum_{i=1}^{a-b+1}(a-i+1)(a-i+2) \mathrm{x}^{a-i}+\sum_{i=1}^{a-b} 2 \mathrm{i}(i+1) \mathrm{x}^{i-1}+2(a-b+1)(a-b+2) b x^{a-b}\right]
\end{aligned}
$$

And obviously
$\Omega^{\prime}\left(T_{b, a} 1\right)=\sum_{i=1}^{a-b+1}(a+2-i)+\sum_{i=1}^{a-b} 2(i+1)+2(a-b+2) b$
$=(a-b+1)(a+2)-1 / 2(a-b+1)(a-b+2)+2(a-b)+(a-b)(a-b+1)+2 b(a-b+2)=1 / 2\left[3\left(a^{2}-b^{2}\right)+9 a+b+2\right]$
Also,

$$
\begin{aligned}
& \Omega^{\prime \prime}\left(T_{b, a} 1\right)=\left[\sum_{i=1}^{a-b+1}(a-i+1)(a-i+2)+\sum_{i=1}^{a-b} 2 \mathrm{i}(i+1)+2(a-b+1)(a-b+2) b\right] \\
& =\sum_{i=1}^{a-b+1}\left(a^{2}+i^{2}-i(2 a+3)+3 a+2\right)+2 \sum_{i=1}^{a-b}\left(i^{2}+i\right)+2(a-b+1)(a-b+2) b \\
& =\sum_{i=1}^{a-b}\left(a^{2}+3 i^{2}-i(2 a+1)+3 a+2\right)+b(b+1)+2 b\left(a^{2}+b^{2}-2 a b+3 a-3 b+2\right) \\
& =\left(a^{2}+3 a+2\right)(a-b)+3 \sum_{i=1}^{a-b} i^{2}-(2 a+1) \sum_{i=1}^{a-b} i+\left(2 a^{2} b+2 b^{3}-4 a b^{2}+6 a b-5 b^{2}+b+4\right) \\
& =\left(a^{2}+3 a+2\right)(a-b)+3 / 6(a-b)(a-b+1)(2 a-2 b+1)-1 / 2(2 a+1)(a-b)(a-b+1) \\
& +\left(2 a^{2} b+2 b^{3}-4 a b^{2}+6 a b-5 b^{2}+b+4\right) \\
& =-b(a-b)(a-b+1)+\left(a^{3}+3 a^{2}+a^{2} b+2 b^{3}-4 a b^{2}+3 a b-5 b^{2}+2 a-b+4\right) \\
& =\left(a^{3}+3 a^{2}+b^{3}-2 a b^{2}+2 a b-4 b^{2}+2 a-b+4\right) .
\end{aligned}
$$

Table 1 [36]: The number of co-distant edges of the hexagonal Trapezoid system $T_{b, a}$ for all positive integer numbers a, b such that $a \geq b$.

quasi-orthogonal cuts	The length of qoc strips	The number of qoc strips
$\mathrm{C}_{i} \forall i=1, \ldots, a-b$	$i+1$	2
C_{a-b+1}	$a-b+2$	$2 b$
$c_{i} \forall i=1, \ldots, a-b+1$	$a-i+2$	1

Now, by above mentions formulas for $\Omega^{\prime}\left(T_{b, \alpha}, x\right)$ and $\Omega^{\prime \prime}\left(T_{b, \alpha}, x\right)(\mathrm{x}=1)$ and according to Figure 2 and Tables 1 [26], we can compute the Cluj-Ilmenau index of the Hexagonal Trapezoid System $T_{b, a}$ as follows:

```
\(C I\left(T_{b, a}\right)=\left[\Omega^{\prime}\left(T_{b, a}, x\right)\right]^{2}-\left[\Omega^{\prime}\left(T_{b, a}, x\right)+\Omega^{\prime \prime}\left(T_{b, a}, x\right)\right]_{x=1}\)
\(=\left[\Omega^{\prime}\left(T_{b, a}, 1\right)\right]^{2}-\left[\Omega^{\prime}\left(T_{b, a}, 1\right)+\Omega^{\prime \prime}\left(T_{b, a}, 1\right)\right]\)
\(=\left[1 / 2\left(3 a^{2}-3 b^{2}+9 a+b+2\right)\right]^{2}-\left[1 / 2\left(3 a^{2}-3 b^{2}+9 a+b+2\right)+\left(a^{3}+3 a^{2}+b^{3}-2 a b^{2}+2 a b-4 b^{2}+2 a-b+4\right)\right]\)
```

$=1 / 4\left(9 a^{4}+9 b^{4}+18 a^{2} b^{2}+50 a^{3}+10 b^{3}+6 a^{2} b-46 a b^{2}+75 a^{2}+11 b^{2}+10 a b+10 a+6 b-16\right]$.

Here the proof of theorem is completed.

Figure 2: All strips cuts of the Hexagonal Trapezoid System $\boldsymbol{T}_{b, a}$

THE CLUJ-ILMENAU INDEX OF "TRIANGULAR BENZENOID G \mathbf{N}^{\prime} "

The aim of this section is to compute the Cluj-Ilmenau index of the Triangular Benzenoid G_{n} ($\left.\forall n \in \mathbb{N}-\{l\}\right)$ by using Cut Method. From Figure 3, one can see that the Triangular Benzenoid G_{n} has exactly $n^{2}+4 n+1$ vertices/atoms and $3 / 2 n(n+3)$ edges/bonds [31, 35-37].

Now, by according to Figure 3, and using Theorems 1 and 2, we see that there are n strips $C_{1}, C_{2}, \ldots, C_{n}$ of length 2, $3, \ldots, n+1$, respectively in a general representation of the Triangular Benzenoid G_{n}. Thus, the Omega polynomial and the Cluj-Ilmenau index of G_{n} are as follow:

Theorem 3 [34]. The Omega polynomial of the Triangular Benzenoid $G_{\mathrm{n}}(\forall n \in \mathbb{N}-\{1\})$ is equal to:
$\Omega\left(G_{n}, x\right)=3 x^{2}+3 x^{3}+\ldots+3 x^{n+1}$
Theorem 4. The Cluj-Ilmenau index of the Triangular Benzenoid $G_{\mathrm{n}}(\forall n \in \mathbb{N}-\{1\})$ is equal to:
$C I\left(G_{\mathrm{n}}\right)=1 / 4\left(9 n^{4}+50 n^{3}+99 n^{2}-26 n+20\right]$.
Proof of Theorem 4. Consider the Triangular Benzenoid G_{n} for all positive integer number n . So by using Theorem 2 and definition of G_{n}, we know that G_{n} is isomorphs with the Hexagonal Trapezoid System $T_{b, a}$ in case $b=1$ and $a=n$, therefore the Cluj-Ilmenau index of G_{n} or $T_{l, n}$ is as follows:
$C I\left(G_{\mathrm{n}}\right)=\left[\Omega^{\prime}\left(G_{\mathrm{n}} x\right)\right]^{2}-\left[\Omega^{\prime}\left(G_{\mathrm{n}}, x\right)+\Omega^{\prime \prime}\left(G_{\mathrm{n}}, x\right)\right]_{x=l}=C I\left(T_{l, n}\right)=$
$=1 / 4\left(9 n^{4}+9+18 n^{2}+50 n^{3}+10+6 n^{2}-46 n+75 n^{2}+11+10 n+10 n+6-16\right]$.
$=1 / 4\left(9 n^{4}+50 n^{3}+99 n^{2}-26 n+20\right]$.

Figure 3 [31]: A general representation of the Triangular Benzenoid G_{n} or $T_{1, n}$ with all strips cuts

Acknowledgement

The authors are thankful to Professor Mircea V. Diudea from the Faculty of Chemistry and Chemical Engineering of Babes-Bolyai University for his precious support and suggestions. The authors are also thankful to the University Grants Commission, Government of India, for the financial support under the Grant $\operatorname{MRP}(S)-0535 / 13-$ 14/KAMY004/UGC-SWRO.

REFERENCES

[1] D.B. West. An Introduction to Graph Theory. Prentice-Hall. (1996).
[2] R. Todeschini and V. Consonni. Handbook of Molecular Descriptors. Wiley, Weinheim. (2000).
[3] N. Trinajstić. Chemical Graph Theory. CRC Press, Bo ca Raton, FL. (1992).
[4] H. Wiener, J. Am. Chem. Soc. 69 (1947) 17.
[5] M.V. Diudea, S. Cigher, A.E. Vizitiu, O. Ursu and P. E. John. Croat. Chem. Acta, 79(3) (2006) 445-448.
[6] A.E. Vizitiu, S. Cigher, M.V. Diudea and M.S. Florescu. MATCH Commun. Math. Comput. Chem. 57(2) (2007) 479-484.
[7] S. Klavžar, MATCH Commun. Math. Comput. Chem. 59 (2008) 217.
[8] D.Ž. Djoković, J. Combin. Theory Ser. B, 14 (1973) 263.
[9] P.M. Winkler, Discrete Appl. Math. 8 (1984) 209.
[10] M.V. Diudea, Omega polynomial. Carpath. J. Math. 22 (2006) 43-47.
[11]P.E. John, A.E. Vizitiu, S. Cigher, and M.V. Diudea, MATCH Commun. Math. Comput. Chem. 57 (2007) 479.
[12] A. R. Ashrafi, M. Jalali, M. Ghorbani, and M. V. Diudea. MATCH Commun. Math. Comput. Chem. 60 (2008) 905-916.
[13] M. V. Diudea. MATCH Commun. Math. Comput. Chem. 60 (2008) 935-944.
[14]M. V. Diudea and A. Ilić. Carpath. J. Math. 25 (2009) 177-185.
[15] M. V. Diudea. J. Math. Chem. 45 (2009) 309-315.
[16] M.V. Diudea and S. Klavžar. Acta Chim. Slov. 57 (2010) 565-570
[17] M.V. Diudea. Acta Chim. Slov. 57 (2010), 551-558.
[18]M. V. Diudea, A. E. Vizitiu, F. Gholaminezhad and A. R. Ashrafi. MATCH Commun. Math. Comput. Chem. 60 (2008) 945-953.
[19] M.V. Diudea, S. Cigher, and P.E. Joh.. MATCH Commun. Math. Comput. Chem. 60 (2008) 237-250.
[20] M. V. Diudea, S. Cigher, A. E. Vizitiu, O. Ursu and P. E. John. Croat. Chem. Acta, 79 (2006) 445-448.
[21]M. V. Diudea, S. Cigher, A. E. Vizitiu, M. S. Florescu, and P. E. John. J. Math. Chem. 45 (2009) 316-329.
[22] M.V. Diudea, MATCH Commun. Math. Comput. Chem. 64 (2010) 569.
[23]M.V. Diudea, K. Nagy, M.L. Pop, F. Gholami-Nezhaad, A.R. Ashrafi. Int. J. Nanosci. Nanotechnol., 6(2) (2010) 97-103.
[24] A.R. Ashrafi, M. Ghorbani and M. Jalali. Ind. J. Chem. 47A (2008) 535.
[25] M. Ghorbani. Digest. J. Nanomater. Bios. 6(2) (2011) 599-602
[26] A. E. Vizitiu and M. V. Diudea. MATCH Commun. Math. Comput. Chem. 60 (2008) 927-933.
[27] M.R. Farahani, K. Kato and M.P. Vlad. Studia Univ. Babes-Bolyai. Chemia 57(3) (2012) 177-182.
[28] M.R. Farahani. Acta Chim. Slov. 59 (2012) 965-968.
[29]M.R. Farahani. World Applied Sciences Journal. 20(9) 1248-1251.
[30] M.R. Farahani. Int. J. Computational and Theoretical Chemistry. 1(2) (2013) 7-10.
[31] M.R. Farahani. Journal of Chemica Acta, 2 (2013) 43-45.
[32] M. Ghorbani, M. Ghazi. Digest. J. Nanomater. Bios. 5(4) (2010) 843-849.
[33] S. Klavžar. MATCH Commun. Math. Comput. Chem., 60 (2008) 255-274.
[34]P.E. John, P.V. Khadikar and J. Singh. J. Math. Chem. 42(1) (2007) 27-45.
[35]Z. Bagheri, A. Mahmiani and O. Khormali. Iranian Journal of Mathematical Sciences and Informatics. 3(1) (2008) 31-39.
[36] M.R. Farahani. New Front Chem. 24(1) (2015) 61-67.
[37] M.R. Farahani. Int. J. Computational Sciences \& Applications. 3(5) (2013) 1-7.

