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ABSTRACT 

The counting polynomials are useful in topological description of benzenoid structures. It also helps to describe its 

topological indices by virtue of quasi-orthogonal cuts of the edge strips in the polycyclic graphs. In this article we 

give a complete description of the Omega and the Sadhana polynomial of the nanotube C4C6C8 and provide its 

mathematical proof. 
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INTRODUCTION 

A covalent bond is a chemical bond that involves the sharing of electron pairs between atoms. The covalently 

bonded compounds can be represented as graphs called the molecular graphs. In molecular graphs atoms are viewed 

as vertices and covalent bonds are viewed as edges between vertices. When we apply the graph theory in the study 

of molecular graphs it is called chemical graph theory. There are many representations of a graph in chemical graph 

theory. It includes sequence of numbers, a polynomial, a single number(topological indices), a matrix etc. Each of 

these representations depicts relevant structural of the underlying molecule. 

A structure is a  trivalent decoration formed by alternating squares C4, hexagons C6 and octagons C8 is named as C4 

C6 C8 (2n,m) nanosheet as shown in Figure 1. The nanosheets are widely used to produce an electrode for a 

supercapacitor. They have wide range of applications in graphene transistors, solar panels, integrated circuits and 

many more. 

Consider a connected graph G(V, E)with the vertex set V(G) and the edge set E(G). Two edges e = uv and f = xy  of 

E(G) are said to be codistant, denoted by  e co f, if they satisfy the following relation:  

d(v,x) = d(v,y)+1 = d(u,x)+1 = d(u,y) 

The relation co is reflexive as e co e  always holds for all e ϵ E(G). Also if e co f then f co e, thus co is also 

symmetric. The relation co is not always transitive. For example for a complete bipartite graph K2,n co is not 

reflexive. If for a graph G the relation co is transitive then G is called a co-graph and the set of edges C(e) = {f ϵ 

E(G); f co e} is said to be an orthogonal cut oc of G. Also then E(G) be a disjoint union of orthogonal cuts i.e. E(G) 

= C1 C2 … Ck, Ci,  Cj = , for all i ≠ j. 

The relation op between two edges e = uv and f = xy of E(G) holds if e and f are opposite or topologically parallel 

and is denoted by e op f. A set of opposite edges within the same face eventually forming a strip of adjacent faces, 

termed as an opposite edge strip ops, which is a quasi-orthogonal cut qoc(i.e., the transitivity relation is not 

necessarily obeyed). It is to be noted that co relation is defined in the whole graph while op is defined only in a face. 

Let m(G,l) be the number of ops strips of length l. In [8], the Omega polynomial is defined as  
l

l
xlGmxG ),(=),(   
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Also in [14], the Sadhana polynomial Sd(G,x) is defined as  
lGE

l
xlGmxGSd  )|(|),(=),(  

Where, │E(G)│is the edge cardinality of the graph. One can obtain the Sadhana polynomial from the definition of 

the Omega polynomial by replacing l by │E(G)│-1 in the exponent. The Omega polynomial has a very strong 

correlation with the total energy of some molecular structures. These polynomials are widely studied in recent years. 

For more details see [9], [8], [14], [6], [11], [7], [1], [3], [10], [2] etc. 

In this paper, we compute the Omega and the Sadhana polynomials of the nanosheet C4 C6 C8 (2n,m). Throughout 

the manuscript we use standard notations from [5] and [8]. 

RESULTS AND DISCUSSION 

In this section, we compute the Omega and the Sadhana polynomial of the nanosheet C4 C6 C8 (2n,m), where 2n is 

the number of hexagons arrangement row wise and m is the number of hexagons arrangements column wise (as 

shown in the figure). The nanosheet has │E(C4 C6 C8 (2n,m))│= 15mn – 2n – 3m. The Omega and the Sadhana 

polynomials are computed in the following proposition for the nanosheet C4 C6 C8 (2n,m).  

 

Figure 1: Nanosheet (4,3)864 CCC  

Theorem 1 Let ),(2864 mnCCCG   be the graph of the nanosheet. Then the followings holds:   

1. The Omega polynomial of G  is given by  
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2. The Sadhana polynomial of G  is given by =),( xGSd  
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Proof. Let ),(2864 mnCCCG 
 
be the graph of the Nanosheet as shown in Figure 1. The graph G  has 

mnmn 3215   edges. From Figure 1 it is clear that there are four types of qocs. The proof is straight forward 

from Table 1, 2, 3 and 4. 

Table  1: Number of co-distant edges of Nanosheet ),(2864 mnCCC   for nm   

Type of qoc No. of distinct edges No. of qoc 
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Therefore, for nm   the Omega polynomial is:  
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Table  2: Number of co-distant edges of the nanosheet ),(2864 mnCCC  for nm <  

Type of qoc No. of distinct edges No. of qoc 

1C  
n3  

n2  

m  

1m  

2C  m2  1n  

3C , 4C  

m2
 

1,...,2,1,2  mii
 

12 mn  

2 

From table 2, the Omega polynomial for nm <  is equal to  
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Table  3: Number of co-distant edges of Nanosheet ),(2864 mnCCC   for ,...2,1,  kknmandnm  

Type of qoc no. of distinct edges No. of qoc 

1C  
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2C  m2  1n  

43 ,CC  

)1(22  km
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From table 3, the Omega polynomial for nm   and ,...2,1,  kknm  is equal to  
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And for ,...2,1,  kknmandnm  the Sadhana polynomial is given by 
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Table  4: Number of co-distant edges of Nanosheet ),(2864 mnCCC   for  ,...2,1,0,2  kknmandnm  

Type of qoc No. of distinct edges No. of qoc 
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From table 4, the Omega polynomial for ,...2,1,0,2  kknmandnm  is equal to  
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And for  ,...2,1,0,2  kknmandnm the Sadhana polynomial is given by 
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CONCLUSIONS 

In this paper, we have calculated the closed form of the Omega and the Sadhana polynomials for the nanosheet 

),(2864 mnCCC . These polynomials are useful for calculating topological descriptors(indices) of these structures. 

These descriptors are also useful in QSAR/QSPR study. 
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