ABSTRACT

Poor sexual performance is a major factor that affects the quality of life. Sexual health requires a positive approach to human sexuality. Cardiovascular leakages and diabetes are the major factors that are responsible for poor sexual performance and reproductive health. This review is aimed at reviewing the pharmacological and phytochemical properties of various medicinal plants used for the improvement of sexual performance and virility. Psychotherapeutic, pharmacological and traditional methods have been used in the management of poor sexual performance and virility. Drugs such as papaverin, alprostaldin and stimulants like apomorphine have been used to improve sexual health. The use of plant such as Panax ginseng C. A. Meyer (Araliaceae), Cannabis sativa L. (Cannabinaceae), Myristica fragrans Houtt. (Myristaceae), Mucuna pruriens Linn. (Leguminosae), Chlorophytum borivilianum Santapau & R.R.Fern. (Liliaceae), Eurycoma longifolia Jack (Simaroubaceae) and Zingiber officinale Roscoe (Zingiberaceae) have been established in the management of sexual dysfunction. The aphrodisiac activities of plants may be as result of their bioactive constituents. This research has therefore shown that the reviewed plants can be used for the management of poor sexual performance and virility.

Keywords: Sexuality; Aphrodisiacs; Health; Phytochemicals; Virility

INTRODUCTION

Sound sexual and reproductive health is one of the major factors that contribute to happy family and good self-esteem among several men and women. Infertility has also played a major role in the disintegration of many families. Sexual health requires a positive approach to human sexuality and an understanding of the complex factors that shape human sexual behaviour [1]. Whether the expression of sexuality leads to sexual health and well-being or to sexual behaviour that put people at risk; it is determined by these factors which could also result to sexual and reproductive ill health [2]. Sexual performance anxiety is a cisgender and very real, upsetting, legitimate issue. It is no secret that our patriarchal culture at large does not understand women sexuality. Because of all the unnecessary and damaging “mystery” surrounding female sexual desire, performance anxiety for women is not often discussed because we don’t really know how to discuss it. For men, sexual performance is an ability to maintain an erection throughout the period of sexual intercourse and this ability of men’s penis to stay erected hard for the duration of sex is a guarantee for a climax. For women, when sexual act creates fear, stress and worry, the
body releases stress hormones- epinephrine and norepinephrine and this worry or stress is usually created by poor sexual confidence and fear of not being able to please your partner- the fear of physical intimacy. The production of these hormones in the body causes poorly wet or dry vagina, highly tense vagina muscles which lead to difficult penetration or nearly impossible penetration and poor desire for sex [3].

The ability to procreate is enhanced through sound sexual health. Poor sexual performance is a major factor that must be overcome for lasting peace in some marriages. Sexuality is a central aspect of being human throughout life and encompasses sex, gender and roles, sexual orientation, eroticism, pleasure, intimacy and reproduction. Sexuality is experienced and expressed in thoughts, fantasies, desires, beliefs, attitudes, values, behaviour, practices, roles and relationships. It is also important to note that while sexuality can include all of these dimensions, not all of them can be experienced or expressed. Sexuality is influenced by the interaction of biological, social, economic, political, cultural, ethical, historical, and religious and spiritual factors [4-5]. Sexual health requires a positive and respectful approach to sexuality and sexual relationships as well as the possibility of having pleasurable and safe sexual experiences free of coercion, discrimination and violence.

The concept of sexual performance varies from one individual to another. Sexual performance is naturally important to men due to their ego and instincts to procreate. The ability to satisfy a woman, the size of a man’s penis which is often though wrongly associated with sexual ability is what makes up every man. Poor sexual performance causes low self-esteem and due to natural sexual instinct, humans are able to attract suitable mates and procreate. Sexual performance in male sex is fundamental in the following areas; the ability to satisfy a woman and give her orgasms and the ability to impregnate a woman [6].

Poor sexual performance can be defined in various ways based on one’s concept of sexual health. The inability to give a woman an orgasm, inability to erect and sustain and erected penis, premature ejaculation, being selfish towards your lover’s needs during sexual intercourse, ignoring foreplay, being too uptight during sex which can make the experience less sensual, routine and boring sex as well as poor communication constitutes poor sexual performance [7].

Poor sexual performance may also be due to erectile dysfunction which occurs as a result of both physiological and mental factors. Low sexual desire is expected to be associated with low sexual activity. Like sexual desires, sexual activity also declines with age. W.H.O estimated over 48.5 million infertile couples worldwide. Poor sexual performance can be manifested in the first three phases of sex viz; stimulation, the plateau and the climaxing phase. These manifestations are usually in the form of low libido, painful sex, premature ejaculation, poor lubrication in women which can hinder pleasurable sex and the inability to achieve orgasm.

According to [8], poor sexual performance can be attributed to numerous factors including hormonal imbalance, congenital disorders such as micropenis and Peyronie’s disease, smoking, excessive alcohols, small penis size or an excessive penis size, fatigue, stress, performance anxiety, past sexual trauma, age factor and poor body image. Sound sexual health can be achieved through counseling and sex therapy, medication, and lifestyle changes. Medical checkups are regularly recommended to ensure it is not due to any untreated medical condition, quitting smoking, sexual compatibility and regular kerglass exercise.

In Ayurveda, poor sexual performance includes a cessation of the sexual desire owing to increased thoughts and forced intercourse, excessive use of certain substances with pungent, acid or saline taste or heat making articles which leads to loss of Saumya Dhatu (watery principle) of the organism, virile impotency resulting from inadequate semen in persons addicted to excessive sexual pleasure, diseases such as syphilis, Sahaja impotency (congenital or sexual incapacity from birth), voluntary suppression of the sexual desire by a strong man observing perfect continence and impotency due to the destruction of local Marma (spermatic cord) [9].

Male impotence or erectile dysfunction is caused mainly by cardiovascular leakages and diabetes among other factors and the use of plants or plant based products to stimulate sexual desire and to enhance performance and enjoyment is almost as old as human race itself. Androgens play significant role in male reproductive health as it acts centrally and peripherally during initiation and sexual intercourse. Stimuli such as steroids (testosterone) are known to either upregulate or downregulate androgen response [10]. Treatment of erectile dysfunction may involve psychotherapeutic approach and pharmacotherapy using drugs such as papaverin, alprostadil, vardenafil and central stimulants like apomorphine or herbal drugs with aphrodisiac activity [11].

Natural products are available in texts of Ayurveda for their spermatogenic and virility potential activities. Ayurvedic aphrodisiac therapeutics is grouped into vajikarana (pharmacological) and rasayana (non-pharmacological products)
Aphrodisiac Plants
The term ‘aphrodisiac’ was derived from the Greek word ‘aphrodite’ which represents a symbol of love and beauty. Over the years, a large number of natural remedies have played different roles as aphrodisiacs in different cultures and civilizations. There is a natural interest of human beings for substances that stimulate libido, potency, virility, and sexual pleasure as it takes care of sexual desires, ejaculation, orgasm and erectile dysfunction. An aphrodisiac literally includes substances that have played significant roles in the management of sexual dysfunction and which also improves sexual behaviour and satisfaction in humans and other animals [12]. According to Ayurveda, aphrodisiacs are classified in the following categories; drugs which increase the quantity of semen or stimulate the production of semen such as Microstylis wallichii, Roscoea proceria, Polygonatum verticillatum, Mucuna pruriens and Asparagus racemosus, drugs which purify and improve the quality of semen for example, Saussurea lappa, Myrica nagi, Sesamum indicum, Vetiveria zizanoides and Anthocephalus cadamba, drugs which improve ejaculatory functions for example, Strychnos nux vomica, Cannabis sativa, Myristica fragrans and Cassia occidentalis, drugs delaying the time of ejaculation or improving ejaculatory performance such as Sida cordifolia, Asparagus racemosus, Cinnamonomum tamala, Anacyclus pyrethrum, Mucuna pruriens and Cannabis sativum, drugs arousing sexual desire, namely. Withania somnifera, Asparagus racemosus, Datura stramonium, Anacyclus pyrethrum, Hibiscus abelmoschus and opium [13](Table 1).

The use of plant based products to stimulate sexual desires and enhance performance and pleasure is almost as old as human race itself since man cannot alienate self from using plants and plant based products for the treatment of his ailments. Aphrodisiacs are basically grouped into two; psychophysiological stimuli (visual, tactile, olfactory and aural) preparations and internal preparations such as food, alcoholic drinks and love potion. Aphrodisiacs can also be categorized based on their mode of action into three groups; substances that increase libido (sexual desire and arousal), substances that increase sexual potency (effectiveness of erection) and substances that increase sexual pleasure [14].

From a scientific standpoint, many historically “powerful” aphrodisiacs may have had such strong results due to mere belief or their powers by users, while nowadays, because of science, many foods are considered to be helpful in your sex life because of the nutrients, vitamins and minerals which they contain. Many herbs have been scientifically proven to increase sexual desire and much more. Plants which possess ability to boost sexual performance and virility include the following; Almonds, Asparagus, Avocado, Banana, Coconut, Dates, Garlic, Mango, Mushroom, Olive, Onion, Sesame seeds, Parsely, Wheat grass, Mints, Aloe, and Celery among others [15]. Apart from medicinal plants, several other drugs of metal and mineral origin are also described in ayurveda for their spermatogenic and virility activities. These include varatika (calcium), gold, etc, Animal products such as meat soup of cock, peacock, swan or sparrow; semen of crocodile, etc. have been reported to possess aphrodisiac activity [16] (Figure 1-10).

Mechanism of action of aphrodisiac plants
Penile erection is controlled by the balance between the factors leading to the contraction and relaxation of smooth muscles of the corpus cavernosa, these effects may occur directly on the central nervous system and/or on the peripheral nervous system by the alteration of blood flow to the genitalia. Neurochemical systems such as norepinephrine, dopamine, serotonin, acetylcholine and histamine work together for increase in sexual arousal.

There are different mechanisms of action of aphrodisiacs such as nitric oxide (NO)-based mechanism of action and androgen based mechanism of action. The neurotransmitter NO drives the relaxation of the penile vasculature and trabecular smooth muscles which play significant roles in penile erection. Relaxation of the trabecular smooth muscles of the corpus cavernous leads to decreased vascular resistance and increased blood flow to the penis. A decrease on outflow is ensured by the compression of the subtunical venules. Both increased inflow and decreased outflow results to penile engorgement and erection. Vasodilation is mediated by NO from the vascular endothelium of the sinusoids and nonadrenergic, noncholinergic and cavernosal nerves (Figure 10-20).

Androgens such as testosterone play crucial role in the development of secondary sexual characters such as epididymis, vas deferens, seminal vesicle, prostate and the penis. The conversion of testosterone to estradiol in the hypothalamus increases sexual functions. Penile erections are also caused by cyclic adenosine monophosphate pathway (cAMP) through the mediation of corporal smooth muscles and respective enzymes and proteins such as prostaglandin and the protein kinase G which causes smooth muscles relaxation and also increases the concentration of Ca2+ which induces a loss of the contractile tone of the penile smooth muscles and increase blood flow in the cavernous body thus yielding and erection [17-19] (Figure 20-29).
Table 1: Medicinal Plants used for the improvement of sexual performance and virility

<table>
<thead>
<tr>
<th>S/N</th>
<th>Plants</th>
<th>Family</th>
<th>Common name</th>
<th>Pharmacology</th>
<th>Mechanism of action</th>
<th>Chemistry</th>
<th>Class of isolates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allium sativum L</td>
<td>Liliaceae</td>
<td>Garlic</td>
<td>The alcoholic extract of A. sativum increased sexual behaviour through the activities of sulfated compounds, peptides, flavonoids and phenolics</td>
<td>Allicin increases blood flow to sexual organs through nitric oxide synthase</td>
<td>Peptides, sulfated compounds, steroids, flavonoids, volatile oils with sulfated compounds like alliin, ajoenes, enzymes, minerals and vitamins</td>
<td>Peptides, steroids, terpenes, flavonoids, volatile oils and vitamins</td>
<td>[20, 21]</td>
</tr>
<tr>
<td>2</td>
<td>Alpinia galanga L</td>
<td>Zingiberaceae</td>
<td>Galangal, blue ginger, Thai ginger</td>
<td>Methanolic extract of A. galanga showed increase in serum testosterone levels at 300 mg/kg/day</td>
<td>Spectroscopic analysis of sample have revealed the presence of 1’S’-1’-acetoxychavicol acetate, 1’S’-1’-acetoxyeugenol acetate, 1’S’-1’-hydroxychavicol acetate, trans-p-hydroxycinnamaldehyde, trans-p-coumaryl alcohol, trans-p-hydroxycinnamyl acetate, and trans-p-coumaryl diacetate, 1, 8-cineole, β-bisabolone and β-selinene. Whereas α-selinene, farnesene, 1,2-benzenedicarboxylic acid, germacrene-B and pentadecane; The rhizome also contains flavonoids, some of which have been identified as kaemperol, kaempferide, galangin and alpinin.</td>
<td>Coumarins, terpenoids, flavonoids, volatile oils, Phenols</td>
<td></td>
<td>[22, 23]</td>
</tr>
<tr>
<td>3</td>
<td>Anacardium occidentale L</td>
<td>Anacardiaceae</td>
<td>Cashew</td>
<td>In a study to determine the aphrodisiac activity of the oils from Anacardium occidentale L seeds and shell, the result showed significant increase in sexual parameters</td>
<td>2-hydroxy-6-pentadecylbenzoic acid, The ethanolic extract of the nuts of Anacardium occidentale L contains phytochemicals such as phenols, carbohydrates, proteins and xanthoproteins as well as volatile oils, 2,6-dihydroxybenzoic acid from cashew apple, myristicin, kaempferol, rhamnetin, cyanidin, peonidin, delphinidin which are flavonoid compounds. Other isolated compounds are 2-hydroxy-6-pentadecylbenzoic acid, cardinal and salicylic acid, ethyl gallate, hyperoside (quercetin-3-galactoside) and β-sitosterol (Fadeyi OE et al., 2015). A new biflavonoid-C-glycoside named occidentoside, also the known (+) salipurposide and beta-sitosterol, new biflavonoid-C-glycoside named occidentoside, also the known (+) salipurposide and beta-sitosterol</td>
<td>Carbohydrates, phenols, flavonoids, steroids, proteins</td>
<td></td>
<td>[24]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-----------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>4</td>
<td>Anacyclus pyrethrum L</td>
<td>Asteraceae</td>
<td>Arkakara</td>
<td>Administration of 50 mg/kg and 100 mg/kg of aqueous extract in albino rats showed significant anabolic and spermatogenic effects. In a separate study, petroleum ether extract had marked influence on body weight and accessory sexual organs weight as compared with arachis oil.</td>
<td>This could be partly explained by its vasorelaxant properties which may be caused by an increase in NO production in vascular bed and a decrease in its destruction.</td>
<td>Alkyl amides, pyrethrins, inulin, sesamine, hydrocaroline, pelitorine, volatile oils such as its is also composed of 2-phenyl ethylamine, anacyn, β-biotol, salvia-4(14)-en-1-one. Eudesma-4(15),7-diene-1-ol and β-himachalol; the essential oil also contains germacreme D, germacreme-4(15),5,10(14)-trien-1-a-ol, caryophyllene oxide, cedryl acetate, eudesma-4(15),7-diene-1-β-ol and spathuleno.</td>
<td>Amides, Volatile oils</td>
<td>[25-27]</td>
</tr>
<tr>
<td>5</td>
<td>Butea frondosa L</td>
<td>Papilionaceae</td>
<td>Flame of the Forest, Bastard Teak, Parrot Tree</td>
<td>The extract (400 mg/kg body wt./day) was administered orally by gavage for 28 days. Mount latency (ML), intromission latency (IL), ejaculation latency (EL), mounting frequency (MF), intromission frequency (IF), ejaculation frequency (EF) and post-ejaculatory interval (PEI) were the parameters observed before and during the sexual behavior study at day 0, 7, 10, 14, 21, and 28. The extract reduced significantly ML, IL, EL and PEI (p < 0.05). The extract also increased significantly MF, IF and EF (p < 0.05). These effects were observed in sexually active and inactive male rats.</td>
<td>Fixed oil 18%, Water soluble albuminoid substances 19% and glucose 6%. Fatty acids isolated from this oil are oleic 1 inoleic, lenorlenic, palmitic, stearic, arachidic, behenic and lingo cleric acid. Q hydroxy-1-methy allophonic acid, 15-hydroxy pentasonic acid and 1-carboxy methoxy-2-carboxy hydrazine have been isolated from the seed coat. Seed has shown the presence of alkaloid monospermine from the alcoholic extract of the seeds are identified palasonin & palasonin-N-Phenyl imidine. Aqueous methanolic extract contains a triazine compound, 4-carboxymethoxy-3-dioxo-hydro-1,2,4-triazine 4.Carboxymethoxy 3.6 dioxo hydro 1, 2, 4, triazine.</td>
<td>Amino acids, alkaloids, fixed oils</td>
<td>[28]</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>6</td>
<td>Caesalpinia benthamiana (Baill) Herend a Zarucchi</td>
<td>Fabaceae</td>
<td>Caesalpinia</td>
<td>The methanolic extract exhibited an accelerator effect by decreasing the latent time. The oral administration of aqueous extract of Caesalpinia benthamiana showed significant increase in mounting frequency and intromission frequency at the dosage of 50 mg/kg</td>
<td>The petroleum ether extract of the bark have yielded cassane diterpenes with antibacterial activity such as deoxycaesaldekarine C, benthaminine I and benthaminine 2. The aqueous extract contains flavonoids, phenols, anthraquinones such as gallic acid, resveratrol; the chloroform and n-butanol extract contains methyl gallate, shikimic acid-3-O-gallate, 1-O-methyl-D-chiroinositol, (-)-epicatechin, (-)-epictaechin-3-O-gallate and kaempferol-3-(6''-gallloyl) glucoside.</td>
<td>Terpenes, benthamine, fatty acids, flavonoids, alkaloids</td>
<td>[29]</td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>Cannabis sativa L</td>
<td>Cannabinaceae</td>
<td>Marijuana, hemp</td>
<td>In India’s ayurveda and Chinese unani medicine, Cannabis used to overcome impotence and raise libido and as a general cure for the disease.</td>
<td>Narcotic resin, cannabidiol, cannabidiol-carboxylic acid, cannabigerol and cannabichromene, cannabipinol and cannabidivarin, phloroglucinol β-D-glucoside, tetrahydrocannabinol,</td>
<td>Cannabinoids, Phenol, alkaloid, flavonoid, volatile oils</td>
<td>[30]</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>Chlorophyllum horivilianum Santapau & R.R. Fern</td>
<td>Liliaceae</td>
<td>Safed Musli</td>
<td>In a study of the aqueous extract of dried roots of Safed Musli in rats, there was increase in libido, sexual vigour and sexual arousal at 250 mg/kg. The study supported treatment of premature ejaculation and oligosperma</td>
<td>The chemical structure of stigmasterol is related to that of testosterone and mainly contributes to its aphrodisiac potentials; hecogenin produces anabolic hormone</td>
<td>Isolated compounds include stigmasterol and hecogenin which are responsible for its antioxidant power, anticancer and aphrodisiac activities. Chlorophytoside-1, fatty acids, eicosadienoic glycosides, saponins, fatty acids, hydrocarbons</td>
<td>[31, 32]</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>------------------------------</td>
<td>---------------</td>
<td>-------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>9</td>
<td>Citrullus lanatus (Thunb.) Matsum. & Nakai</td>
<td>Cucurbitaceae</td>
<td>Water Melon</td>
<td>The effect of red watermelon flesh extract on male sexual behaviour has been determined. In the research, the suspension of the flesh extract was administered on doses 100, 500 and 1000 mg/kg to different groups of male rats (n=5) daily for 22 days. The result showed that oral administration of watermelon flesh extract caused significant increase in mounting frequency, intromission frequency and ejaculatory latency. Watermelon flesh extract did not produce undesirable side effects on the male rats and thus its short term use is apparently safe</td>
<td>Citrulline improves blood drive to the genital regions and plays a significant role in the relaxation of blood, a major tool in high sexual performance</td>
<td>Watermelon contains bioactive agents such as citrulline, β-carotene and lycopene which have been used in the management of prostate cancer.</td>
<td>Carotenoids</td>
<td>[33]</td>
</tr>
<tr>
<td>10</td>
<td>Eurycoma longifolia Jack</td>
<td>Simaroubaceae</td>
<td>Tonkat Ali</td>
<td>Standardized extract F2 at 25 mg/kg and its quassinoids improved rat spermatogenesis, improved testosterone steroidogenesis. Standardised water extract at 400 mg/day for six weeks on testosterone, epitestosterone (T-E) ratio showed significant difference between supplementation and placebo. Treatment with Tongkat Ali extract at 400 mg/day for 5 weeks resulted to increase in free and total testosterone concentration and muscular force in men and women</td>
<td>Improves spermatogenesis by affecting the hypothalamic-pituitary-gonadal axis. Improves testosterone by inhibiting aromatic conversion of testosterone to estrogen and may also involve phosphodiesterase inhibition. The extracts of tongkat Ali affects male infertility by suppressing α-2HS glycoprotein expression which thereby increases testosterone level and insulin sensitivity</td>
<td>Quassinoids such as eurycomanone, eurycomnol, pasakbumin-B, hydroxylkaineanones, β-carboline alkaloids, canthin-6-one alkaloids, eurycomalactone, laurycolactone, biphenyl neolignan and steroids, alkaloids such as 5,9-dimethoxyxycanthin-6-one, 9,10-dimethoxy-3-methylxanthin5,6-dione have been reported. Squalene derivatives such as longilene peroxidase, teurilene, eurylene and 14-deacetylleurylene have also been isolated</td>
<td>phenols, quassinoids, alkaloids, volatile oils, hydrocarbons</td>
<td>[34-40]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>----------------</td>
<td>-------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>-------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>11</td>
<td>Ginkgo biloba L.</td>
<td>Ginkgoaceae</td>
<td>Gingko</td>
<td>According to some researches, extracts of Ginkgo biloba may also help in</td>
<td>Improved blood circulation results to an increase in the amount of oxygen in the blood</td>
<td>GC-MS, HPLC-MS, HPLC-RI analysis of samples have led to the characterization of</td>
<td>Steroids, flavonoids, ginkgosides</td>
<td>[41]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>psychological conditions by easing stress, mild depression and anxiety-</td>
<td>and to all major organs of the body including the heart and brain thereby resulting to</td>
<td>ginkgolides A, B, C, J, M with cage structures involving a tertiary butyl group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>major causes of poor sexual performance thereby improving the mood for</td>
<td>an increased arterial inflow to arterial tissues through arteries and veins without</td>
<td>and six membered rings including a spirononane system, a tetrahydrofuran and three</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sexual pleasure. Ginkgo biloba extract have been used in traditional Chinese</td>
<td>obstructing systemic blood pressure. This enhanced supply of blood to sex organs is</td>
<td>lactone groups. 33 flavonoids have been isolated from the leaves including</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>medicine to improve blood circulation. Ginkgo biloba constituents have a thinning</td>
<td>crucial in maintaining strong erection</td>
<td>amento flavone, quercetin, myricetin, sesquioflavone, Ginkgetin, Isohannetin, etc.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>effect on the blood besides helping to improve the muscle tone in the walls of</td>
<td></td>
<td>Ginkgolic acids have also been isolated; the albumen of the seed also contains</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>the blood vessels</td>
<td></td>
<td>neurotoxic 4’-O-methylpyridoxine (ginkgotoxin), etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>Hibiscus sabdariffa L. (Hs)</td>
<td>Malvaceae</td>
<td>Zobo, Roselle</td>
<td>Pharmacology of the testicular effects of subchronic administration of H</td>
<td>It decreases the viscosity of the blood and stimulates internal peristalsis</td>
<td>Several compounds have been isolated from different parts of H sabdariffa L (Hs)</td>
<td>Carotenoids, vitamins, flavonoids, minerals, amino acids</td>
<td>[42, 43]</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>sabdariffa L (Hs) calyx aqueous extract in rats has been determined. Doses of</td>
<td></td>
<td>including β-carotene, vitamin C, riboflavin, thiamine, and nutrients such as</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1.15, 2.30, and 4.60g/kg for 12 weeks showed in significant change in the</td>
<td></td>
<td>protein, carbohydrates and minerals like calcium and iron. H sabdariffa L (Hs) is</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>absolute and relative testicular weights; significant decrease in the</td>
<td></td>
<td>composed chiefly of organic acids, anthocyanins, polysaccharides and flavonoids.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>epididymal sperm count and induced testicular toxicity</td>
<td></td>
<td>Spectroscopic analysis of the aqueous extract of H sabdariffa L (Hs) have yielded</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>citric acids, hydroxy citric acid, hibiscus acid, malic acid and tartaric acids;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>oxalic acid as minor compounds. Delphinidin and cyanidin based anthocyanins</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>including delphinidin-3-sambubioside (Hibiscin), cyanidin-3-sambubioside (gossypyacin),</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>cyanidin-3,5-diglucoside, delphinidin, etc., have been reported. Isolation and</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>characterization of the flower extract have yielded flavonoids such as hibiscetin-</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3-glucoside, (hibiscitrin), sabdaratin, gossytrin, quercetin, luteolin, chlorogenic</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>acid, protocatechuic acid; sterols such as β-sitosterol and ergosterol have</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>been isolated. Other isolated compounds includes galloatechin, caffeic acid,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>galloatechin acid, ellagic acid, methyl gallate, kaempferol-3-O-rutinosie,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>myrecetin, kaempferol-3-glucoside, tiliroside etc</td>
<td></td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>---------</td>
<td>----------</td>
<td>-------------------</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>13</td>
<td>Lepidium meyenii Walpers</td>
<td>Cruciferae</td>
<td>Viagra of Peru, Maca</td>
<td>In a research, treatment of rats with maca at high altitudes prevented high altitude spermatogenic disruption. In a separate study, 1500 mg/kg or 3000 mg/kg p.o showed no significant effect on serum levels of leutinizing and follicle stimulating hormone.</td>
<td>Maca improves stamina and endurance, mood, and libido and erectile capabilities due to the presence of arginine which boosts nitric oxide which relaxes blood vessels, the same basic effect Viagra produces</td>
<td>Macamides such as benzylglucosinolate, benzylicyanate, benzyldinitride, benzylamine, hexanal, linoleic acid, N-benzylhexadecanamide, alkaloids, fatty acids, amino acids</td>
<td>Macamides, alkaloids, amino acids, fatty acids</td>
<td>[44, 45]</td>
</tr>
<tr>
<td>14</td>
<td>Mimosa tenuiflora (Wild.) Poir</td>
<td>Momisaceae</td>
<td>Jurema</td>
<td>A research into the spermatic characteristics of M. tenuiflora on ram showed no significant differences (P>0.05) for the progressive motility, spermatic strength and morphology among the sheep with or without M. tenuiflora. The result indicated that M. tenuiflora does not influence negatively on spermatc characteristics of the sheep</td>
<td>Two alkaloids have been isolated from M. tenuiflora and includes 5-hydroxy-typtamine and N,N-dimethyltyptamine. M. tenuiflora is also composed of yuremanin and two chalcones; kukulkan A (2,4,4-dihydroxy-3′-4′-dihydroxyxylchalcone), kukulkan B (2′,4′,4′-trihydroxy-3′-methoxyxylchalcone). M. tenuiflora is also composed of the steroids campesterol-3-O-β-D-glucopyranosyl, stigmasterol-3-O-β-D-glucopyranosyl and β-sitosterol-3-O-β-D-glucopyranosyl. Saponins such as mimonoside A, mimonoside B, mimonoside C have been isolated.</td>
<td>Alkaloids, steroids, flavonoids</td>
<td>[46]</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>Mucuna pruriens L.</td>
<td>Leguminosae</td>
<td>Devil beans</td>
<td>In different texts of ayurveda, M. pruriens is most commonly used in aphrodisiac formulations. At 70 mg/kg, treatments significantly improved testosterone quality, ameliorated psychological stress and improved sperm count</td>
<td>Producing a dose-dependent increase in follicle stimulating hormone and leutinizing hormone which increases the number of eggs released at ovulation by the action of L-DOPA and dopamine</td>
<td>L-DOPA, serotonin, mucunain, arachidic acid, behenic acid, genistein, glutamic acids, betacarboline, β-sitosterol, cysteine, dopamine, lystne, tryptamine, riboflavin</td>
<td>Alkaloids, amino acids, saponins, vitamins</td>
<td>[47-50]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--</td>
<td>---------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>16</td>
<td>Musa species L</td>
<td>Musaceae</td>
<td>Banana, plantain</td>
<td>Aqueous extract of M. paradisiaca root on testicular function parameters on male rats at 25, 50 and 100 mg/kg enhanced the testosterone dependent normal functioning of the testes. M. sapientum contain bromine, norepinephrine, dopamine and serotonin in the peel and pulp. Norepinephrine and dopamine elevate blood pressure while serotonin stimulates the blood vessels of the intestine</td>
<td>Increase in blood Circulation</td>
<td>Bromine, rubidium, strontium, saponins, norepinephrine, dopamine, serotonin, vitamin B₆, vitamin a, c and D and natural glucose, fructose. Several compounds such as acyl steryl glycoside such a sitoisidoside-I, sitiesidoside-II, sitiesidoside-III, sitiesidoside-IV and steryl glycoside such as sitosterol, myo-inositol β-D-glucoside have been isolated from fruits of M. paradisiaca. A bicyclic diarylheptanoid, rel-(3S, 4aR,10bR)-8-hydroxy-3-(4-hydroxyphenyl)-9-methoxy-4a,5,6,10b-tetrahydro-3H-naphthof[2,1-b]pyran, and 1,2-dihydro-1,2,3-trihydroxy-9-(4-hydroxyphenyl) naphthal anhydride, 1,7-bis(4-hydroxyphenyl) hepta-4(£), 6(£)-dien-3-one have also been isolated, cyclomusalenol, cyclomusalenone</td>
<td>Saponins, alkaloids, vitamins, glycosides, triterpenes, sterols</td>
<td>[51, 52]</td>
</tr>
<tr>
<td>17</td>
<td>Myristica fragrans Houtt</td>
<td>Myristaceae</td>
<td>Nutmeg</td>
<td>50% ethanolic extract showed significant increase in aphrodisiac properties in mice such as increase in mating frequency, libido and potency. It has also been used in Unani medicine for the treatment of sexual disorders</td>
<td>Stimulation of the nervous system by myristicin</td>
<td>A-pinene, camphene, p-cymene, sabinen, β-phellandrene, γ-terpinene, limonene, myrcene, linalool, 3-methyl-4-decan-1-ol, fixed oils like myristic, stearic, palmitic, oleic and olenolic acids, Licarin B and malabaricone C</td>
<td>Essential oils, fixed oils, unsaturated aliphatic hydrocarbon</td>
<td>[53-56]</td>
</tr>
<tr>
<td>18</td>
<td>Ocimum gratissimum L</td>
<td>Labiatae</td>
<td>Ocimum, Scent leaf</td>
<td>Oral administration of extracts of Ocimum at 100, 250 and 500 mg/kg to 6 groups of male rats once a day for seven days showed significant increase in mounting frequency, intromission frequency, erection and aggregate penile reflexes</td>
<td></td>
<td>Ocimum gratissimum L consist of several essential oils such as thymol, eugenol, methyl charval, gratissimol, pentoses, hexoses, uronic acid, alkaloids, tannins, flavonoids, methyl eugenol, cis-octene, trans-octene, pinene, camphor, germacrene-D, transcaryophyllene, farnesene, 1-bisabolene, p-cymene, γ-terpenes, α-trans sabiene hydrate, 1,8-cineole, linalool, β-saline, methylisoeugenol, geraniol</td>
<td>Volatile oils, alkaloids, tannins</td>
<td>[57]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>19</td>
<td>Panax ginseng C. A. Meyer</td>
<td>Araliaceae</td>
<td>Ginseng berry</td>
<td>PGRg3 significantly produced significant and sustains increase in sexual activity of normal male rats. Improvement in all forms of sexual dysfunction including erectile dysfunction and premature ejaculation</td>
<td>Ginsenosides enhances acetylcholine-induced and transmural nerve stimulation-activated relaxation associated with increasing tissue cGMP mediated by the release of NO</td>
<td>Triterpene glycosides called ginsenosides. Alkanes, alkenes, sterols, fatty acids, carbohydrates, flavonoids, organic acids and vitamin</td>
<td>Saponins, hydrocarbons, flavonoids and vitamin</td>
<td>[58-61]</td>
</tr>
<tr>
<td>20</td>
<td>Passiflora incarnata L.</td>
<td>Passifloraceae</td>
<td>Passion flower</td>
<td>The aphrodisiac effect of the methanolic extract of P. incarnata L. has been determined in mice. The result showed significant aphrodisiac properties in male mice at all doses 75, 100 and 150 mg/kg with 100 mg/kg having the highest activity</td>
<td>Several compounds such as flavonoids and other phenolics have been isolated from P. incarnata L. such as apigenin and luteolin, isovitexin, vitexin, isoorientin, orientin and saponarin. Also isolated from P. incarnata L includes schaftoside, isoschaftoside, isovitexin-2'-O-β-glucoside and isoorientin-2-O-β-glucoside. NMR and GC/MS spectral analysis have also yielded vicenin-2 and lucenin 2. Indole alkaloids such as Harman, harmine, harmalol, and harmaline have also been isolated from P. incarnata L. Other isolated compounds includes γ-benzopyrone derivative maltol, raffinoses, sucrose, D-glucose, D-fructose and other essential oil containing hexanol, benzyl alcohol, linalool, 2-phenyl alcohol, 2-hydroxy benzoic acid methyl ester, carveine, eugenol, isoeugenol, and phytol among others</td>
<td>Phenolics, alkaloids, sugars</td>
<td>[62-65]</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>--------------</td>
<td>---------------------</td>
<td>-----------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>21</td>
<td>Pausinystalia yohimbe (K. Schum.) Pierre ex Beille</td>
<td>Rubiaceae</td>
<td>Yohimbe</td>
<td>A 1998 study of yohimbine showed that it could be considered as a pharmacologic agent. The result showed that yohimbine is superior to placebo in the treatment of erectile dysfunction. In another study, there was significant increase in the number of men that reached orgasm with 20 mg dose of yohimbine</td>
<td>Circulation of blood to sex organs thereby enhancing sexual arousal and reduction of psychological conditions by easing stress, mild depression and anxiety</td>
<td>P. yohimbe is composed of numerous indole alkaloids and tryptamine alkaloids such as yohimbine, ajmalicine, ajmaline, corynantheine, deserpine, mitragynine, rauwolficine, spegatrine, reserpine, and rescinnamine, as well as α-yohimbine, β-yohimbine, Pseudojohimbine, Allojohimbine, Ajmaline, ajmalicine, 19-Dehydroyohimbine, Dihydrocorynantheine, Dihydrossirikin, Tetrahydrodihydrocorynantheine, 2,4-Dimethy-1,3-dioxane, 3,4-Dihydroxy-2,3-dihydro-4H-pyran-4-one, palmitic acid, n-Hexadecanoic acid of palmitic acid, 2-Methylene-11-hexadecynoic acid, linoleic acid and Octadecanoic acid</td>
<td>Alkaloids, fatty acids</td>
<td>[66]</td>
</tr>
<tr>
<td>22</td>
<td>Pedalium murex L.</td>
<td>Pedaliaceae</td>
<td>Caltrops, Gokhru</td>
<td>In a study against ethanol induced infertility in male rats 200 mg/kg and 400 mg/kg of petroleum ether extracts showed significant increase in mating, mounting behaviour, total body weight, sperm motility and percentage of pregnancy</td>
<td>increase in sexual behaviour</td>
<td>Phytochemicals such as diosgenin and vanillin, quercetin, ursolic acid, caffeic acid and amino acids such as glycine, histidine, tyrosine, threonine, aspartic acid and glutamic acid and fatty acids, fatty acids such as triacanofonic acid</td>
<td>Saponins, flavonoids, amino acids and fatty acids</td>
<td>[67, 68]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>--------------------------------</td>
<td>-----------</td>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------------------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>23</td>
<td>Peganum harmala L.</td>
<td>Zygophyllaceae</td>
<td>African rue, harmel</td>
<td>In a study to determine the aphrodisiac potential of P. harmala L. seeds, it was reported that the seeds showed significant changes in the weight of the accessory glands, semen quality and histology of the organs involved in reproductive functions without affecting the metabolic functions</td>
<td>The extract enhanced orientation of males towards females by increasing mounting and ano-genital behaviour</td>
<td>The plant is composed of several β-carboline alkaloids such harmanaline, harmine, harmalone, harmol and tetralhydroharmine in the seeds and roots. Quinazoline alkaloids such as vasicine and vasicinone have been isolated from the flowers and stem. A new β-carboline alkaloid, harmalidine and peganine have been isolated from the seeds and aerial parts of P. harmala. The presence of a new β-carboline alkaloid characterized as 1-thioformyl-8-β-D-glucopyranoside-bis-2,3-dihydroisopyridinopyrrol and four new flavonoids including 7-O-harmnoside, 7-O-6''-O-glucosyl-2''-O-(3''-acetylthamnosyl) glucoside, 7-O(2''-O-harmnosyl-2''-O-glucosylglucoside) and glycoflavone 2''-O-harmnosyl-2''-O-glucosylicytiside (Sharaf M et al., 1997).</td>
<td>Alkaloids, flavonoid, antraquinones</td>
<td>[69]</td>
</tr>
<tr>
<td>24</td>
<td>Piper guineense Schum and Thonn</td>
<td>Piperaceae</td>
<td>West African pepper, Benin pepper, Urassa pepper</td>
<td>In a study to determine the effect of aqueous extract of dry fruits of P. guineense on male fertility parameters of adult male Sprague Dawley rats, the result showed an increase in body weight and serum testosterone level. It was concluded that the extract of dry seeds of P. guineense at 200mg/kg for 4 weeks and 8 weeks respectively had a positive impact on male fertility parameters and showed no deleterious effects on male fertility. In a separate study, the effects of Afromomum Meleguetu and P. guineense on sexual behaviour of male rats, P. guineense at 122.5mg/kg stimulated male sexual behaviour by an increase in penile erection index and frequency of</td>
<td>The chemistry of P. guineense has yielded several compounds. GC-MS spectroscopic analysis of the plant has shown the presence of alkaloids, flavonoids, saponins, phenols, tannins, etc. Several compounds have been isolated including piperine, elemicine, myristicin and safrole which have strong antimicrobial properties. GC-MS spectroscopic analysis of the fruit and leaf has yielded</td>
<td>Alkaloids, flavonoids, saponins, phenols and tannins</td>
<td>[70-72]</td>
<td></td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------</td>
<td>----------------</td>
<td>----------------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--</td>
<td>------------</td>
</tr>
<tr>
<td>25</td>
<td>Syzygium aromaticum (L) Merr. and Perry</td>
<td>Myrtaceae</td>
<td>Clove</td>
<td>50% ethanolic extract of clove in normal male rats showed significant increase in mounting frequency, intromission frequency, erection, quick flips, and significant reduction in mounting latency. The N-hexane extract at 15, 30, and 60 mg/kg for 35 days in Parkes (P) strain mice showed increase in aphrodisiac activities</td>
<td>The flavonoids taxarixetin 3-O-β-D-glucopyranoside, ombuin 3-O-β-D-glucopyranoside and quercetin, Clove oil contains sesquiterpenes Other compounds isolated includes 5, 7-dihydroxy-2-methylchromene-8-C-β-D-glucopyranoside, biforin, kaempferol, rhamnocitrin, myricetin, gallic acid, ellagic acid and oleanolic acid glucoside</td>
<td>volatile oils, flavonoids, phenols, fatty acids</td>
<td>[73-75]</td>
<td></td>
</tr>
<tr>
<td>26</td>
<td>Terminalia catappa L</td>
<td>Combretaceae</td>
<td>Sea almond</td>
<td>1500 mg/kg dose had a significant aphrodisiac effect characterized by increase in sexual vigour but no effect on libido. In high doses of 3000 mg/kg, all determined sexual parameters were inhibited. The plant showed aphrodisiac properties at low dosage</td>
<td>improved sexual behaviour</td>
<td>triterpenoid compound 4,4,6a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a, 7,8,8a,9, 10,11,12a,14,14a,14b-icosahydrodropicen-3-ol, HPLC-PDA analysis of the leaves have yielded the presence of ursolic acid, Asiatic acid, squalene, but no caffeine, flavonoids such as isovitexin, vitexin and rutin, gallic acid, hydrolysed tannins, puncalagin anomers as a major component. Punicalin, terflavin A and B, tergalagin, terecatain, chebulagic, geranin, granato B and covilagin. Ellagittannins and gallotannins have been isolated. The hydroalcoholic extract of the leaves have yielded α and β-anomers of puncalagin and ellagic acid</td>
<td>Fatty acids, alkaloids, terpenoids</td>
<td>[76]</td>
</tr>
</tbody>
</table>
Plants and Their Pharmacological Properties

<table>
<thead>
<tr>
<th>S/N</th>
<th>Plants</th>
<th>Family</th>
<th>Common name</th>
<th>Pharmacology</th>
<th>Mechanism of action</th>
<th>Chemistry</th>
<th>Class of isolates</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>27</td>
<td>Tribulus terrestris L</td>
<td>Zygophyllaceae</td>
<td>Devil’s thorn, puncture vine, caltrop, yellow and goathead</td>
<td>In ayurveda, puncture vine has been used for the treatment of erectile dysfunction. T. terrestris at 5 mg/kg in adult sprague Dawely rats on sexual behaviour and intracavernous pressure showed increase in mount intromission and ejaculation latency representing an improvement in sexual character. In another study, 100 mg/kg of the test drug was proven anabolic. They help to regulate sexual energy levels and sexual strength by increasing the percentage of free available testosterone levels for men and they even affect pregnenolone, progesterone, and estrogen.</td>
<td>The aphrodisiac activity of protodioscin has been suggested to be effective through androgen enhancement and nitric oxide release from nerve endings of corpus cavernous tissue</td>
<td>The plant contains Dioscin, protodioscin, and diosgenin. Saponins such as glucopyranosyl galactopyrans, ruscogenin, hecogenin, diosgenin; Polysaccharides; and Sterols including sitosterol, campesterol have been isolated. Flavonoids such as kaempferol, kaempferol glycosides, quercetin, and Fatty acids such as palmitic, stearic, oleic, and Linoleic acid; Tannis; Potassium salts have all been reported.</td>
<td>Saponins, sterols, flavonoids, fatty acids, tannins,minerals</td>
<td>[77-79]</td>
</tr>
<tr>
<td>28</td>
<td>Turnera diffusa (Wild.) ex Schult</td>
<td>Turneraceae</td>
<td>Damiana</td>
<td>T. diffusa extract at 80 mg/kg also significantly increased the percentage of male achieving one ejaculatory series and resuming a second one and a significant decrease in post ejaculatory interval.</td>
<td>These effects can be attributed to the presence of phytochemicals such as caffeine (alkaloid) or butine and other flavonoids</td>
<td>T. diffusa is composed of numerous phytochemicals. Over 35 compounds have been isolated from T. diffusa comprising flavonoids, terpenoids, saccharides, phenolics and cyanogenetic derivatives. It is composed of tricin, chrysoeriol and Echinacin. These compounds were characterized as luteolin 8-C-E-propenoic acid, luteolin 8-C-β-[6-deoxy-2-O-(α-L-rhamnopyranosyl)-xylo-hexopyranosyl-3-uloside], apigenin 7-O-(6'-O-p-Z-coumaroyl-β-d-glucopyranosyl), apigenin 7-O-(4'-O-p-Z-coumaroylglucoside), syringetin 3-O-[β-d-glucopyranosyl(1→6)-β-d-glucopyranoside], and laricitin 3-O-[β-d-glucopyranosyl(1→6)-β-d-glucopyranoside]. Their structures were determined by spectroscopic and chemical methods. It is also composed of quercetin and vitexin.</td>
<td>Flavonoids, terpenoids, saccharides</td>
<td>[80-82]</td>
</tr>
<tr>
<td>S/N</td>
<td>Plants</td>
<td>Family</td>
<td>Common name</td>
<td>Pharmacology</td>
<td>Mechanism of action</td>
<td>Chemistry</td>
<td>Class of isolates</td>
<td>References</td>
</tr>
<tr>
<td>-----</td>
<td>-------------------------</td>
<td>---------------</td>
<td>-------------</td>
<td>--</td>
<td>--</td>
<td>---</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>29</td>
<td>Zingiber officinale</td>
<td>Zingiberaceae</td>
<td>Ginger</td>
<td>Scientific studies have shown increased libido but its activity was lower than</td>
<td>Increase in intercavernosal pressure, a reliable positive index of erectile dysfunction</td>
<td>Ginger contains 1-2% volatile oils, 5-8% resinsous matter, starch and muscilage. Major constituents are monoterpenes such as β-phillandiene, (+)-c amphetamine, cineole, ciral and borneol. Sesquiterpene hydrocarbons like zingiberene, β-bisboline, α-farnesene and α-curcumene as well as sesquiphillandiene and the sesquiterpene alcohol zingiberol and gingerol which is responsible for its pungency. Others are ginger diol, gingerenone, dialdehyde and shogaols</td>
<td>Volatile oils</td>
<td>[83]</td>
</tr>
</tbody>
</table>

Figure 1: *Allium sativum* L.
Figure 2: *Alpinia galangal* L.

1’S-1-hydroxychavicol acetate
1’S-1-acetoxychavicol acetate
1’S-1-acetyoxyeugenol acetate

Trans-p-hydroxycinnamaldehyde
Trans-p-coumaryl alcohol
Galangin

Figure 3: *Anacyclus pyrethrum* L.

Pellitorine
2-phenyl thylamine

Figure 4: *Caesalpinia benthamiana* (Baill) Herend α Zarucchi

Inulin
Figure 5: *Cannabis sativa* L.

Deoxycaesaldekarine C

Benthaminine I

Benthaminine 2

Cannabidiol-carboxylic acid

Cannabidiol

Figure 6: *Chlorophylum borivilianum* Santapau & R.R. Fern

Spirostane

Furostane

Triterpenoid saponin

Stigmasterol

Figure 7: *Eurycoma longifolia* Jack
Figure 8: Lepidium meyenii Walpers

- Eurycomanone
- Eurycomanol
- Pasakbumin B
- 7-Methoxy-beta-carboline-1-propionic acid
- Niloticin
- Hydroxyklaineanone

Figure 9: Mucuna pruriens L.

- Benzaldehyde
- Benzylamine
- Benzyl alcohol
- Hexanal
- Linolenic acid
- N-benzyl- (9Z, 12Z, 15Z)-octadecatrienamide
- L-DOPA
- Dopamine
Figure 10: Musa species L.

Quercetin
5-hydroxytryptamine
7,8-dihydroxy-3-methylisochroman-4-one

Figure 11: Myristica fragrans Houtt

Macelignan

Figure 12: Ocimum gratissimum L.

Alpha copaene
Beta selinene
Farnesene
Ocimene

Gamma cadinol
Germacrene D
Oleanolic acid
Terpinolene
Figure 13: *Panax ginseng* C. A. Meyer

Figure 14: *Pausinystalia yohimbe* (K. Schum.) Pierre ex Beille
Figure 1: Pedalium murex L

![Chemical structure of Pedalium murex](image)

3,4,5-trihydroxy-3,7-dimethoxyflavone

Figure 16: Syzygium aromaticum (L) Merr. and Perry

![Chemical structures of Syzygium aromaticum](image)

Limonin

Ferrulic aldehyde

Ombutin

3-O-Beta-Delta-glucopyranoside

Tamarixetin

3-O-Beta-Delta-glucopyranoside

Quercetin

Figure 17: Terminalia catappa L.

![Chemical structure of Terminalia catappa](image)

4,4,6a,11,11,14b-heptamethyl-1,2,3,4,4a,5,6,6a,7,8,8a,9,10,11,12,12a,14,14a,14b-icosahydropicen-3-ol
Figure 21: *Citrullus lanatus* (Thunb.) Matsum. & Nakai

Beta-carotene

![Beta-carotene structure]

Citrulline

![Citrulline structure]

Lycopene

![Lycopene structure]

Figure 22: *Gingko biloba* L.

Flavonol structures

Kaempferol derivatives: R$_1$=OH; R$_2$=H
Quercetin derivatives: R$_1$=OH; R$_2$=H
Myricetin derivatives: R$_1$=OH; R$_2$=OH
Isorhamnetin derivatives: R$_1$=OMe; R$_2$=H

Biflavonoid structures

<table>
<thead>
<tr>
<th>Biflavonoids</th>
<th>R$_1$</th>
<th>R$_2$</th>
<th>R$_3$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Amentoflavone</td>
<td>H</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Bilobetin</td>
<td>Me</td>
<td>H</td>
<td>H</td>
</tr>
<tr>
<td>Sesquojaflavone</td>
<td>H</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>Ginkgetin</td>
<td>Me</td>
<td>Me</td>
<td>H</td>
</tr>
<tr>
<td>Isoginkgetin</td>
<td>Me</td>
<td>H</td>
<td>Me</td>
</tr>
<tr>
<td>Sciadopitysin</td>
<td>Me</td>
<td>Me</td>
<td>Me</td>
</tr>
</tbody>
</table>
Figure 23: *Peganum harmala*

Harmane

Harmine

Harmaline

Harmalol

Harmaline

Harmaline

Harmane

Harmine

Harmaline

Pegamine

Figure 24: *Mimosa tenuiflora* (Wild.) Poir (Mimosaceae)

R = OMe = R₁ = OH; R₂ = Me - Tenuiflorin A
R = R₁ = OMe; R₂ = H - Tenuiflorin B
R = H; R₁ = OH; R₂ = Me - Tenuiflorin C
R = H; R₁ = H; R₂ = H-6-Dimethoxycapilarisin
R = H; R₁ = H; R₂ = Me-6-Dimethoxy-4-O-methylcapilarisin

Figure 25: *Turnera diffusa* (Wild.) ex Schult (Turneraceae)

Tricin

Chrysoeriol

Echinacin
Figure 26: *Passiflora incarnata* L.

![Chemical structures of D-glucose, D-fructose, Harmalol, Harmine, Harmaline, and Harmane](image)

Figure 27: *Piper guineense* Schum and Thonn (Piperaceae)

![Chemical structures of Cyclostachine A and B, Trichostachine](image)

Figure 28: *Hibiscus sabdariffa* L. (Hs) (Malvaceae)

![Chemical structures of Protocatechuic acid, Quercetin-3-rutinoside, Hibiscic acid, (2S, R)-hydroxycitric acid, Riboflavin, Ascorbic acid, and Thiamine chloride](image)
CONCLUSION

Poor sexual performance is a significant factor in human life since it affects man in numerous ways. It is significant that issues surrounding poor sexual performance and virility are unraveled in various economies of the world. Several plants have proven useful in the management of sexual disorders throughout history, even herbs and spices have been used to enhanced sexual activities in various parts of the world. There is great need for substances that are used to treat sexual dysfunction in humans. The use of aphrodisiacs is prominent in many countries of the world including Nigeria.

Aphrodisiacs can be used directly or indirectly in the management of sexual dysfunction and improvement of virility. Demand for natural aphrodisiacs require further studies to properly understand their effects on human and safety profile, uses of aphrodisiacs can be harmful due to unavailable data on safety, mechanism of action and knowledge to support their extensive use in procreation. Isolation and characterization of the active constituents of plants used in improvement of sexual performance and virility can cause a dynamic change in the world today. It is pertinent that the phytochemistry of all plant used to treat sexual dysfunction and which also plays a significant role in the improvement of virility is studied. This review emphasizes pharmacology and phytochemistry of all reviewed plants.

REFERENCES

[9] Singh AP; Sarkar S; Tripathi M; Rajender S. PlO S One. 2013, 8 (1).
[14] Chauhan NS; Sharma V; Dixit VK; Thakur MA. Biomed Res Int. 2014.
[22] Chudiwal AK; Jain DP; Somani PS. *International Journal of Natural products and Resources*. 2010, 1(2), 143-149.
[25] Sharma V; Thakur M; Chauhan NS; Dixit UK. *Zhong xiyi Jie He xue Bao. 2010*, 8(8), 767-73.
[26] Ramachandran S; Sridhan Y; Sam SK; Sayavanan M; Leonard JT; Anbalagan N; Sridhar SK. *Phytomedicine. 2004*, 11(2-3), 165-8.
[27] Usmani A; Khushtr MA; Siddiqui A; Satya PS. *J Appl Pharm Sci. 2016*, 6(03), 144-150.
[33] Chan K; Lee S; Sam T; Tan S; Noguchi H; Sankawa U. *Phytochemistry. 1991*, 30, 3138-3141.
[34] Morita H; Kishi E; Takeya K; Itokawa; Litaka Y. *Phytochemistry*, 1993, 33, 691-696.
[36] Kuo PC; Damu AG; Lec KH; Wu TS. *Biorg Med Chem. 2004*, 12, 537-544.
[37] Miyake K; Tezuka Y; Awaie S; Li F; Kadota S. *J Wet Prod. 2009*, 72, 2135 – 2140.
[44] Gonzales GF; Cordova A; Vega K; Chung A; Villena A; Gonce C. *Andrologia. 2002*, 34, 367-72.
[45] Gonzales GF; Cordova A; Vega K; Chung A; Villena A; Gonce C. *J Endocrinol. 2005*, 176, 163-168.
[46] León L; Maldonado E; Cruz A; Ortega A. *Planta Med. 2004*, 70, 536.
[47] Shukla KK; Mahdi AA; Ahmad MK; Jaiswar SP; Shankwar SN; Tiwari SC. *PubMed. 2010*, 23(2).
[48] Shukla KK; Mahdi AA; Ahmad MK; Shankwar SN; Rajender S; Jaiswar SP. *Fertil Steril. 2009*, 92(6), 1934-40.
[52] Yakubu MT; Oyeyipo TO; Quadri AL; Akanji MA. *J Basic Clinical Physiol Pharmacol. 2013*, 24(2).
[60] Mosaad AA; Olivier J; Aziza AE; Myung HP; Won JY; Young TK; Rihn RB. *General Health and Medicinal Sciences. 2014*, 1(1), 3-8.
[61] Kim J; Su HK; Summik; Chan P Roong; Donghyun C; Dae BS; Shin SK. *Nat Prod Chem Res. 2016*.
[64] Marna ES; Giuseppina N; Tabuch R. *Bras-Farmacogn. 2016*, 22(6).
[70] Kamtchouing P; Mbongue GY; Dimo T; Watcho P; Jatsa HB; Sokeng SD. Behave pharmacol. 2002, 13(3), 243-7.
[71] Besong EE; Balogun MF; Serges FA; Mbamalu OS; Obinna JN. Int J Pharm Pharm Res. 2016, 6(1), 2340-7203.
[72] Memudu AE; Akinrinade ID; Ogundele OM; Dare BJ. European J Med Plants. 2015, 5(3), 297-303
[75] Mahmoud IN; Ahmed HG; Ahmed HE; Abidel RHF; Hui S; Enamul H; Tom JM. Rev Latinoamer Quim. 2007, 35(3), 48-56.
[76] Francisco JM; Carlos SLJ; Greghi LE; Flavia AR; Fujimura CQL; Wagner V; Lourdes dos Santos C. Evid Based Complement Alternat Med. 2014, 28-47.
[77] Adimoeilja A; Adaikan PG. Int J. Import Res. 1997, 9 (1), 564 – 74
[78] Gauthaman K; Adaikan PG; Prasad RN. Life Sc. 2002, 71, 1385-9B.
[81] Estrada-Reyes R; Ortis-Lopez J; Gutierrez-Ortis L; Martinez M. J Ethnopharmacol. 2013, 123(3)