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ABSTRACT 
 
In order to examine the distributions stress and displacement with the internal dissymmetrical crack, an 
asymmetrical dynamic crack design is presented for bridging fiber pull-out in unidirectional composite materials. 
The crack extension should also appear in the format of self-similarity because fiber failure is ascertained by the 
maximum tensile stress. The formulation involves the development of a Riemann-Hilbert problem. Analytical 

solutions under the conditions of an increasing motive force 33 / xtP , 23 / txP  are closed for an asymmetrical 

dynamic crack with bridging fiber pull-out, respectively.  
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INTRODUCTION 

It is well known that the matrix crack, as well as fracture process of the bridging fibers, is one of the critical 
mechanisms of the crack expansion in fiber-reinforced composite materials, e.g. the unidirectional fiber-reinforced 
brittle matrix composites [1-2]. It is essential to deal with the mechanical analysis of matrix cracking with bridging 
fibers, in order to evaluate the distribution of the axial traction force in each fiber. Literature [3] proposed a measure 
to estimate the distribution of the traction force for a crack with bridging fibers in an infinite orthotropic elastic 
plane under a uniform remote tensile stress and also presented a design of bridging fiber pull-out by the same 
process. Most of researchers [4-13] have investigated the bridging fibrous problem of the crack by means of 
boundary collocation method (BCM), but all of them studied static problems concerning composite materials with 
numerical solutions. Researches in [14-18] et al. obtained a closed solution to the elastodynamic crack problem in an 
orthotropic medium. However, each active crack problem mentioned above was not concerned with fracture process 
of the bridging fiber pull-out of composite materials. Many researchers [19-22] have studied dynamic problems of 
the bridging fiber pull-out of composite materials and concluded analytical solutions, but they did not address the 
asymmetrical dynamic problem of bridging fiber pull-out. Because of the complexity and difficulty, dynamic 
fracture problems of composite materials researched are not enough thoroughly [23-26]. When a crack occurs in 
composite materials, bridging fiber pull-out often exists in the front of the crack tip, and this is an inevitable 
phenomenon. Composite materials are often regarded as orthotropic anisotropic body in terms of their fibrous 
directions, therefore, investigating dynamic fracture problems concerning the bridging fiber pull-out is an extremely 
significant aspect on the mechanics of composite materials because many engineering structures will destruct in 
dynamic conditions as time goes on. So far, the analytical solution to asymmetrical dynamic crack extension of 
bridging fiber pull-out has not been found out very less[27], the authors try to approach and examine the problem 
from a new perspective because the new dynamic design is obvious different from the old one in [27]. 
 
In this paper, the problem of an asymmetrical crack with bridging fiber pull-out of unidirectional composite material 
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is analyzed under the dynamic conditions by means of Keldysh-Sedov mixed boundary value method, and that 
analytical solutions for unidirectionally reinforced material with fibers parallel to the free surface are presented. In 
the finite orthotropic plate, the distribution of displacement and stress can be calculated by the stress functions under 
the conditions of a non-uniform tensile stress and the traction forces of bridging fibers on crack edges. In order to 
simulate the state of the bridging fibers, the asymmetrical design of bridging fiber pull-out is introduced. By 
utilizing this design, the relation between the traction forces on the bridging fiber and the crack opening 
displacement is ascertained. The solution of a sole dislocation in an elastic half-plane is derived by complex variable 
analysis. The crack is then described as a consecutive distribution of dislocation. This solution in conjunction with a 
bridging fiber pull-out force gives rise to a system of self-similar functions with dislocation density as unknown 
units. The self-similar functions are then resolved analytically by means of Keldysh-Sedov approach. In order to 
settle efficaciously fracture dynamics problems of bridging fiber pull-out of composite materials, it is indispensable 
to build a dynamic design of bridging fiber pull-out.  
 
The problem under consideration is that of a crack, running in one plane, assumed to nucleate from an 
infinitesimally small micro-crack with the unlike velocity from the start. This asymmetrical crack is moving with 

constant velocity 1V  and 2V  at subsonic velocity in both the positive and negative directions of the x -axis, 

respectively [28] which was not concerned with bridging fiber pull-out of composite materials. It is entirely different 
from the symmetrical crack moving in both directions of thex -axis with constant velocity V in literatures [16-22, 
25-26, 29]. All of them considered motion in materials, which were supposed to be homogeneous and isotropic, with 
respect to stress-strain relationships and fracturing character. If the fiber failure is governed by maximum tensile 
stress, which occurs at the crack plane, the fiber breaks and hence the crack extension should also appear in a 
self-similar modality. The fiber breaks lie along a transverse line and therefore, present a notch [3, 30-31]. When a 
crack expands at higher speed, bridging fiber pull-out of composite materials still exists in the dynamic circumstance, 
which is more significant than those in the static case. Since bridging fibers can lead to an arresting purpose on crack 
extension along the original notch plane, dynamic fracture effect on bridging fiber pull-out of composite materials 
will be expressed, at the same time, stresses and displacements as well as stress intensity factors are deducted 
properly. In this paper, a dynamic design of bridging fiber pull-out is developed to study the asymmetric propagation 
of the finite length crack in unidirectional composite materials. 

[1] The correlative expressions of self-similar functions 

In order to resolve efficiently fracture dynamics problems on composite materials, solutions will be obtained under 
the action of mutative loads for a mode Ⅰ asymmetric propagation crack. In terms of the theorem of generalized 
functions, the dissimilar boundary condition problems considered will be transformed into Keldysh-Sedov mixed 
boundary value problem utilizing self-similar functions, then correlative solutions will be attained. 
 
Assume that there are any number of loaded segments and displacement segments along the x-axis, the ends of these 
sections are running with different constant velocity. At the initial moment 0=t , the half-plane is stillness. In 
these segments the loads and displacements are discretionary linear combination of the following functions 
[18-22,26-27,32-34]： 
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Here k 、 1k  and s 、 1s  are arbitrary integer positive numbers.  

 
A discretional sequential function of two variables x and  t  may be represented as a linear superposition of Eq. (1); 
thus it has significance in principle to seek the loadings or the displacements satisfying the modality of Eq. (2). Let 
us introduce the following linear differential operator as well as integral operator: 
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Here +m+n, -m-n and 0 represent the (m+n)th order derivative, the (m+n)th order integral and function’s self. It is 
easy to prove that there were exist constants m and n. When putting Eq.(3) into Eqs. (2), (1); we will attain functions 
that are homogeneous functions of x  and t  of zeroth dimension (homogeneous), the couple m , n  will be 
called an index of self-similarity [26-27,32-34].  
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Utilizing corresponding expressions of elastodynamics equations of motion for an orthotropic anisotropic body 
[18-22, 26-27,32-34]: 
 
for the case when functions Lu  and Lv  are homogeneous 

Luu =0
，   Lvv =0

，   xyxy Lττ =0 ,     yy Lσσ =0                 (4) 

 

for the case when functions yLσ and xyLτ  are homogeneous 

  Lu
t

u
∂
∂=0 , Lv

t
v

∂
∂=0 ,  yy L

t
σσ

∂
∂=0

,  xyxy L
t

ττ
∂
∂=0

           (5) 

 
The relative self-similar functions are as follows [18-23,26-27]： 

      )(Re)/1(0 τσ Fty = ,      )(Re0 τWv = ,               (6) 

 

  )()](/)([)( 1 ττττ FDDW =′                       (7) 

 

where： tx /=τ ， )(τF 、 )(τW  are self-similar functions. The values of )(/)(1 ττ DD  can be ascertained form 

Appendix 1 of literatures [21,18, 27]. Indicated here are only )(/)(1 ττ DD  in the subsonic speed range with 

purely imaginary values. Thus, elastodynamics problems for an orthotropic anisotropic body can be reduced to 
seeking the sole unknown function for which )(τF  and )(τW  must satisfy the boundary-value conditions. This 

case is Riemann-Hilbert problem in the theory of complex functions while for the simplest case, there is results from 
the Keldysh-Sedov or Dirichlet problem. Refer to literatures detailedly [35-37].  
 
Fracture dynamics problems will be researched for an infinite orthotropic anisotropic body. Assuming at the initial 
moment 0=t  a crack appears at the origin of coordinates and begins to spread asymmetrically at constant 

velocity 1V 、 2V  at subsonic speed in both the positive and negative directions of the −x axis, respectively; and at, 

0<t , the half-plane was at rest. The surfaces of the crack are subjected to the unlike types of loads under the plane 
strain states according to the presumption.  
 
[2] Foundational modality of the solution to dynamic asymmetrical propagation problem concerning mode I 
crack 
At the initial moment 0=t , a micro-crack suddenly is postulated to occur in an orthotropic anisotropic body. Let 
the Cartesian co-ordinate axes accord with the axes of elastic symmetry of the body. The problem is restricted to 

motion in the −− yx plane. The crack is running asymmetrically with constant velocity 1V and 2V  respectively 

in the positive and negative directions of x -axis such that. 021 >> VV . Consider the translation of the following 

boundary condition as  

),(),0,( 1 txftxy =σ ，      tVxtV 12 <<−  

,0),0,( =txv               tVx 2−<  or  tVx 1>                           (8) 

 
Let’s introduce the variable tx /=τ . By application of the above corresponding expressions and 

)/()( txxt δδ =  in the theory of generalized functions [37-39], the boundary conditions can be transformed as:  

)](,[)(Re 2 τδττ fF = ，      12 VV <<− τ  

0)(Re =′ τW ，             2V−<τ   or   1V>τ                          (9) 

 
In the light of the relationship )(τF  and )(τW ′  in Eq.(7) and the previous conditions, the format of sole 

unknown function )(τW ′  can be confirmed:  

)](,[()( 3 τξττ fW =′                                      (10) 

 
Then the considered problem can be easily decreased to Keldysh-Sedov problem: 

0)(Re =τξ ，          2V−<τ   or   1V>τ  
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0)(Im =τξ ，          12 VV <<− τ                                     (11) 

 
Synthetically considering asymmetry and the infinite point of the plane corresponding to the origin of coordinates of 
the physical plane as well as singularities of the stress at the crack tip [40-41]，the solution of the above problems 
can be deducted by literatures [27-28,42] as follows:  
 

)](),[()( 21 τττξ +−= VVT                                (12) 

 
Then using Eqs. (6) or (7), people will facilely gain the stress, the displacement and the stress intensity factor for the 
problems concerning asymmetrical crack propagation.  
 
4  An asymmetrical dynamic crack design for bridging fiber pull-out in unidirectional composite materials 
The crack is postulated to nucleate from an infinitesimally small micro-crack located along the −x axis in 

self-similar modality, and to move asymmetrically with constant velocity  1V  and 2V  in the positive and negative 

x directions such that. 021 >> VV . Bridging fiber pull-out of unidirectional composite materials considered is 

designed on a two-dimensional region, having a single row of parallel, identical, equally spaced fibers, segregated 
by matrix. The initial damage is taken to consist of an arbitrary number of broken fibers such that all breaks lie 
along the −x axis forming a curved notch. In addition to this notch, a discretional number of self-similar (off-axis) 
fiber breaks, i. e. fiber pull-out, with asymmetry with respect to x and along a transverse line are also considered. 
The sketch of an asymmetrical dynamic crack design of bridging fiber pull-out configuration is displayed in Fig.1. 
The contour in Fig.1 is symmetry both in geometry and loading with respect to the −x axis, but it is asymmetry 
with respect to the −y axis on account of crack asymmetrical expansion. The fibers and the matrix are taken to be 

linearly elastic. It is further assumed that the fibers have a much higher elastic modulus in the axial direction than 
the matrix and therefore, the fibers are taken as supporting all of the axial loads in composite materials [43]. Load is 
transferred between adjacent fibers through the matrix by a simple shear mechanism. The shear stresses are 
independent of transverse displacements and the equilibrium equation in the fiber direction decreases to an equation 
in the longitudinal displacements alone, as is a typical of shear-lag theory [21-23, 27, 30-31]. The approach and 
designing procedure developed by [21-23, 30] will be used. The major difference among [21-23, 30] and the present 
work is in the mode of fiber break. Unlike in [30] where static problems are considered, the fiber fractures in turn 
occur along two single planes, i.e. the fiber fracture was self-similar fiber (off-axis) break and inevitably had relation 
to both time t and displacement x. In view of this, the geometry of the damage will not be the same about the 

−x axis, i.e. break lie is also dissymmetry about −y axis on account of crack asymmetrical extension. That is, the 

fiber fracture could be self-similar fiber fracture and therefore. also present a notch. The fibrous fracture speeds 

presumed are 1α  and 2α  such that. 02121 >>>> ααVV , as displayed in Fig. 1. The crack or notch is at. 

0=y , tVxtV 12 <<−  in the matrix, and the bridging fiber pull-out location is ahead of the crack tips, i. e. 

tVx 1>  or tVx 2−< . The fibrous area is located at the interval of. txtV 22 α−<<−  and tVxt 11 <<α , 

whereas the broken fibers are located in the domain of. txt 12 αα <<− . 

 

t1αt2α−tV2− tV1

y

x

 
Fig.1. Sketch of an asymmetrical dynamic crack design of bridging fiber pull-out in unidirectional composite materials 

 
Obviously, the asymmetrical dynamic design of crack expansion problem with bridging fiber pull-out in Fig.1 is 
shown by the mechanical design of a dynamic crack of bridging fibers in Fig.2. The bridging fibers are symmetrical 
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state with respect to−x axis. Each bridging fiber is replaced by a pair of vertical traction forces that act at the points 
with the same x-coordinate on the upper and lower track surfaces, but in the opposite direction. Each bridging fiber 
is assumed to be balanced with the fracture load of a fiber from the matrix. In order to analyze the design 
conveniently break lie presumed has no effects on the crack. The present design has the symmetry of geometrical 
and mechanical conditions with respect to−x axis, but it has no such a character with respect to y axis because of 

the asymmetrical crack extension. Closure forces act on the segment of. 0=y , txtV 22 α−<<−  and 

tVxt 11 <<α , which represent tension forces of bridging fibers. Fibers of the composite materials are usually 

arranged tightly, separated by matrix, therefore bridging fiber traction forces are postulated to be distributed 

continuously. It is obvious that traction forces are larger near the points of. t1α , t2α , and they are smaller close to 

the points of. tV 1 , tV 2 [27]. This situation is similar to that of [19-23] except that the crack asymmetrically runs. 

When a crack moves at high speed, its dimension is related to the parameters. x  and t , and the edges of the crack 
subjected to loads must also be related to. x  and t . The fibers in the matrix are supposed to be distributed 
homogenously. Each fiber has the same power. When a fracture occurs, both the fiber and the matrix are in the same 
plane of crack expansion [4, 19-20]. Certainly, this is an assumed mechanical design which maybe not accord with 
real cases, and it needs more improvements in future. 

t1αt2α−
tV2− tV1

y

x

 
Fig.2. The mechanical design of an asymmetrical dynamic crack in bridging fiber pull-out 

 
5  The solutions of idiographic problems   
In order to solve efficaciously asymmetrical dynamics problems with bridging fiber pull-out in unidirectional 
composite materials, solutions will be found under the conditions of different loads for mode I moving crack. In the 
light of the theorem of generalized functions, the unlike boundary condition problems studied will be readily 
changed into Keldysh-Sedov mixed boundary value problem by the measures of self-similar functions, and the 
corresponding solutions will be acquired. The problems researched are under the plane strain states. 
 
1)  Presume at the initial moment. 0=t , a crack suddenly occurs and begins to propagate asymmetrically with 

constant velocity 1V  and 2V  in the positive and negative directions of x -axis respectively; such that. 

021 >> VV . The surfaces of the crack are subjected to standard point force. 33 / xtP , moving at a constant 

velocity β  along the positive direction of x-axis, where 1V<β ; at 0<t  the half-plane was at rest. On the 

half-plane at 0=y , the boundary conditions will be as follows:    

 

)(/),0,( 33 txxPttxy βδσ −⋅−= ，       tVxtV 12 <<−  

,0),0,( =txv                              tVx 2−<   or   tVx 1>           (13) 

 
In this case, the displacement will apparently be homogeneous functions, in which. 1=L . Using tx /=τ  and 
the theory of generalized functions [37-39] as well as Eqs. (4) and (6), the first representation of Eq. (13) can be 
written as: 

)()(/)(Re 333 βτδτβδτ −−=−⋅−= −PtxtxPtF         12 VV <<− τ       

0)(Re =′ τW ，                           2V−<τ   or   1V>τ             (14) 

 
In the light of Eq. (7) , boundary conditions (14) will be further rewritten as follows: 
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D
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0)(Re =′ τW ，                           2V−<τ   or   1V>τ             (15) 

 
Deducting from the above formulas, the sole solution of )(τW ′  must have the format: 

)]([/)()( 3 βτττξτ −=′W                             (16)  

 

In the formula )(τξ  has no singularity in the realm of. 12 VV <<− τ ,while )(/)( 1 ττ DD  is purely 

imaginary for the subsonic speeds, therefore )(τξ  must be purely real in the neighborhood of 12 VV <<− τ . 

Thus, Eq. (15) becomes as: 

0)(Re =τξ ，                 2V−<τ   or   1V>τ  

0)(Im =τξ ，                 12 VV <<− τ                                (17) 

 
According to asymmetry and the conditions of the infinite point of the plane corresponding to the origin of 
coordinates of the physical plane as well as singularities of the crack tip [40-41]，the unique solution of the 
Keldysh-Sedov problem (17) must have the following shape: 
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WhereA is an unknown constant.  
 
Substituting Eq. (18) into Eqs. (16) and (7), there results: 

))(()(
)(

21
3 ττβττ

τ
+−−

=′
VV

A
W                              (19) 

))(()(

)(/)(
)(

21
3

1

ττβττ
τττ

+−−
⋅=

VV

DDA
F                               (20) 

 
Then putting Eq. (20) into the first of Eq. (14), at βτ → , constant A  can be ensured: 
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Inserting Eqs. (20) into (6) and (4), at the surface 0=y , the stress yzτ  and dynamic stress intensity factor 

)(1 tK  are gained, respectively: 
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Known from the above, at tVx 2−→ or tVx 1→  the stress of the crack tip tends to infinity and has apparent 

singularity, hence its result is right. 
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The superscripts of Eqs. (23) and (24) show the stress intensity factor at. tVx 1→  and. tVx 2−→ , respectively. 

In order to represent expediently, one postulates: 
2

212121 )())(( ττττ −−+=+−= VVVVVVX                                (25) 

 

The correlative constants of the above can show only [44] as follows: 21VVa = ， 21 VVb −= ， 1−=c ，
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Putting Eq. (19) Into Eqs. (4), (6), after integrating with respective to τ  we can attain v : 
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Utilizing correlative integral formulas [44] to yield: 
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where: 2
21211 )( ββ −−+= VVVVa , β2211 −−= VVb .  

 
Putting Eqs. (27), (28), (29) , (30) into (26), we can easily gain v  as follows: 
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where: 21VVa = , 21 VVb −= , 2
21

2 )(4 VVbacK +−=−= , 2
21211 )( ββ −−+= VVVVa , 

β2211 −−= VVb . Its result is obtained by relative integral formulas in literature [38]. 

 

By application of the solution of Eq. (31), the bridging fibrous fracture speeds 1α  and 2α  of composite materials 

can be attained. 
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a

VV

a

b
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Each fibre has the same power [16-18], therefore the fibrous fracture power must be equal. That is to 

say: ∆=∆=∆ 21 ，while, ∆  can be determined by a sole axial tensile test with 1V ， 2V  and β  referred to as 

known constants. According to this measure, the fibrous fracture speeds 1α  and 2α  can be only attained 
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numerical solution, respectively, because 1α  and 2α will not be represented in the format of explicit functions.  

 

2) With all conditions holding the same as those in the previous example, the applied loads become. 23 / txP . The 

boundary conditions will be as follows: 

)(/),0,( 23 txtPxtxy βδσ −⋅−= ，       tVxtV 12 <<−  

,0),0,( =txv                      tVx 2−<   or   tVx 1>                 (34) 

 
In this case, the stress will obviously be homogeneous functions, in which. 1=L . According to Eqs. (5), (6) and 
the theory of generalized functions [37-39], boundary conditions (34) can be rewritten as follows:  

)(2)](/2[)(Re 333 βτδτβδτ −=−⋅−−= PtxttPxF ，     12 VV <<− τ        

0)(Re =′ τW ，                           2V−<τ   or   1V>τ             (35) 

 
Owing to the derivative of Dirac’s function equaling zero at. tx β≠ , the above expression is deduced [37-39]. 

In terms of Eq. (7), boundary conditions (35) will be further rewritten as: 

)(2)](
)(
)(

Re[ 3

1

βτδττ
τ
τ −=′⋅ PW

D

D
，      12 VV <<− τ  

0)(Re =′ τW ，                      2V−<τ   or   1V>τ           (36) 

 
From the above formulas, the unique solution of )(τW ′  can be easily deduced as follows: 

    )/()()( 3 βτττξτ −⋅=′W                                   (37) 

In the formula, )(τξ  has no singularity in the scope of. 12 VV <<− τ ,while, )(/)( 1 ττ DD  is purely 

imaginary for the subsonic speeds, therefore, )(τξ  must be purely real at the interval of. 12 VV <<− τ . So, 

question (36) takes: 

  0)(Re =τξ ，                 2V−<τ   or   1V>τ  

0)(Im =τξ ，                 12 VV <<− τ                               (38) 

 
In terms of asymmetry and the conditions of the infinite point of the plane corresponding to the origin of coordinates 
of the physical plane as well as singularities of the crack tip [40-41]，the sole solution of the Keldysh-Sedov problem 
(38) can be attained: 

 2/3
21 )])([(

)(
ττ

τξ
+−

=
VV

A
                             (39) 

 
WhereA is an unknown constant.  
 
Then putting Eq. (39) Into Eqs. (37) and (7), there results: 

2/3
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ττβτ
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W                            (40) 
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VV
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D
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F                       (41) 

 
Substituting Eq. (41) Into the first of Eq. (36), at βτ → , constant A can be ascertained: 

   
)](/)(Im[

)])([(2

1

2/3
21

ββπ
ββ

DD

VVP
A

+−=                              (42) 

 
In an orthotropic isotropic body, the disturbance range of elastic wave can be depicted by the circular area of radius 

tc1  and. tc2 . Here 1c  and 2c  are the velocities of longitudinal and transverse waves ( 21 cc > ) of elastic 
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body，respectively. In an orthotropic anisotropic body, the disturbance range of elastic wave is not the circular area 

and can not surpass the threshold value ρ/11CCd =  of elastic body, Where. 11C  is an elastic constant of 

materials. At. tCx d> , with this expression: 0)](/)(Im[ 1 =ττ DD , thus the stresses and the displacements are 

zero which coincide with the initial boundary conditions; and this illuminates that at 0=y , disturbance of elastic 

wave can not exceed. tCd .  

 
Now inserting Eq. (41) into (6) and (5), at the surface 0=y , the stresses and the dynamic stress intensity factor 

are gained, respectively: 
 

∫∝ +−−
⋅=

x

y dt
VV

DDA

t 2/3
21

1
3

)])([()(
)](/)(Im[

Re
1

ττβτ
τττσ  

∫ +−−
⋅−= t

x

Cd

d
VV

DDA τ
ττβτ

τττ
2/3

21

1
2

)])()[((
)](/)(Im[

Re  ,  tVx 2−<  or tVx 1>           (43) 
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π                                   (44) 
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t
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d
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τττπ 2/3
21

1
2

2
)2(

)])()[((
)](/)(Im[

Re)(2lim)(
2
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)](/)(Im[
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t

++
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The limit of Eqs.(44) and (45) remains with the shape ∞⋅0  which should be translated into the modality of ∞∞ / , 
then the aftermath of the two formulae can be calculated by the approaches of L’Hospital theorem [45]. The 

superscripts of the two formulas also represent the stress intensity factor at. tVx 1→  and. tVx 2−→ , 

respectively. 
 
Simplified, we postulate again:  

2
212121 )())(( ττττ −−+=+−= VVVVVVX                                (46) 

 

The correlative constants of the above can show only [44] as follows: 21VVa = ， 21 VVb −= ， 1−=c ，

2
21

2 )(4 VVbacK +−=−=  

 
Integrating Eq.(40) in terms of relevant formulae in literature [44], we will attain )(τW  

τ
ττβτ

ττττ d
VV

A
dWW

))(()(
)()(

21

3

+−−
=′= ∫                  

  2/3

3
22 ]

)(
[

X

d
A

τ
βτ

βββττ∫ −
+++= ,                                   (47) 

 

Integrating Eq.(47), one will achieve 0v . But it has four terms, separate denotation is more expedient, then essential 
formulae can be utilized in literature [38], now presuming: 
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]
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Putting Eqs. (48), (49), (50) into (47), now presuming: 
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Denominator of the fourth term in Eq. (47) contains this term 2/3)( Xβτ − , so the calculation is incapable of 

applying integral formulas directly, thus integral format must change into performable integral[38]. 
 

By variable replacement: βττ −=1 ，now, putting it into Eq. (46), one can acquire: 
2

1121
2

212121 )2()())(( ττβββττ −−−+−−+=+−= VVVVVVVVX         (54) 

 

The relative constants of Eq. (54) can denote as follows: 2
21211 )( ββ −−+= VVVVa ， β2211 −−= VVb ，

1−=c ， KVVbcaK =+−=−= 2
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111 )(4   

 

Substituting Eq. (54) into the fourth term of Eq. (47), after integrating with respective to τ  we can obtain )(4 τW  

in terms of literature [38]: 
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Known from Eq.(47): )()()()()( 4321 τττττ WWWWW +++= . The crack spreads along the x-axis, therefore 

)(τW  including Eqs. (51), (52), (53) and (55) can be performed in a definite integral operation, one takes constant. 

0=C . 
 

Now replacing Eq.(51) into Eqs. (6), (5), then applying Eqs. (27) and (28) to yield the divisional displacement 1v : 
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Then substituting Eq. (52) into Eqs. (6), (5) after utilizing Eqs. (27) and (28), the divisional displacement 2v  can 

be acquired as: 
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Putting Eq. (53) into Eqs. (6), (5) by using Eqs. (27) and (28), the divisional displacement 3v  can be attained as: 
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Then putting Eq. (55) into Eqs. (6), (5), the displacement 4v  can be acquired as: 
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The second item of the above (without coefficient term) can be expressed as follows: 
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Substituting Eqs. (60), (26), (27) into Eq. (59), the displacement 4v  can be gained: 
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Then a , b , K , 1a  and 1b  can be replaced with relevant constants by application of Eqs. (46), (54), one 

presumes: 

β1
2
11 2bbKE −−= 111 )2( bbKbbK −=+−= β                         (62) 

aKbabbbKF 24)2( 11
2
11 +−−−= βββ βββ KbaKbabbbK =+−−= 24)( 11  

βββ 1
2

1 (2)4( bbKaKabb +=++−  KaabKa 1
2 2)222()2 =+−=+ ββ       (63) 

 

Putting Eqs. (54), (55) into Eq. (53), the displacement 4v  can be obtained: 

))(({ 21
1

1

3

4 xtVxtV
Ka

E

a

A
v +−= β

1

11

1 2
ln

1
)(

a

baX

a

x
t +

−
+

+−
βτβ

 

}
2

))((
ln

2
21

2/3
1

a

b

x

atxtVxtV

Ka

Fx +
++−

−
β

，     tVxtV 12 <<−       (64) 

The displacement v  is the sum of subdistrict displacement: 4321 vvvvv +++= . Afterward the addition of Eqs. 

(56), (50) , (50) and (64), the displacement v  is gained: 
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where: 21VVa = ， 21 VVb −= ；

2
21211 )( ββ −−+= VVVVa ， β2211 −−= VVb ， 1−=c ，
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KVVbcaK =+−=−= 2
21

2
111 )(4   

 

Applying the same approach as that for resolving Eqs. (32) and, (33), substitute tx 1α= , tx 2α−=  into Eq. (65) 

While 1V , 2V   and t  were also referred to as known constants, the fibrous fracture speeds 1α  and 2α  can be 

facilely attained numerical solutions on account of similar reasons.  
 
6  Description of dynamic stress intensity factor  
Analytical solutions need translating into numerical solutions in terms of real case of concrete problems, therefore 
variable rule of dynamic stress intensity factors can be depicted validly. When relevant parameters are put into Eqs. 

(23), (24)，(44), (45) to easily plot )()1(
1 tK  and )()2(

1 tK  as a function of time t , respectively, and the numerical 

solutions of them are facilely obtained. The following constants [40-41, 36] are presumed: 
 

GpaC 24.1911 = ;   GpaC 25.112 = ;   GpaC 83.1722 = ;   GpaC 00.166 =   
1

1 300 −⋅= smV ;    1
2 250 −⋅= smV ;   1200 −⋅= smβ ;     NP 200= ;   

    33108.95.0 −⋅××= mNρ ;      

 

Known from Eqs. (23) and (24) , after simulative software Matlab 6.5, dynamic stress intensity factors )()1(
1 tK  

and )()2(
1 tK  decline gradually to slow and trend to constants finally and also have apparent singularity with the 

increase of time because only variable t  locates in the denominator of the two expressions, moreover, the rest 
quantities are referred to as real constants. Such currents are detailedly illustrated by the curves in Fig.3. This kind 
of the alterable current is related to the result obtained by relative numerical calculation in literatures [47-48], 
therefore the outcomes obtained are proved to be right. The correlative numerical value relationships are represented 
in Table.1. 
 

 
Fig.3. Dynamic stress intensity factors )()1(

1 tK  and )()2(
1 tK  versus time. t  
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Table.1  Relative numerical values between dynamic stress intensity factors )()1(
1 tK , )()2(

1 tK  and time t  

 

sec/10 4−×t  2 4 6 8 10 

2/37)1(
1 /10)( −− ⋅× mNtK  

3.7271 2.6354 2.1518 1.8635 1.6668 

2/37)2(
1 /10)( −− ⋅× mNtK  

1.4427 1.0202 0.8330 0.7214 0.6452 

sec/10 4−×t  12 14 16 18 20 

2/37)1(
1 /10)( −− ⋅× mNtK  

1.5215 1.4087 1.3177 1.2423 1.1786 

2/38)2(
1 /10)( −− ⋅× mNtK  

5.8899 5.4529 5.1008 4.8092 4.5623 

 
Fig.4. Dynamic stress intensity factors )()1(

1 tK  and )()2(
1 tK  versus time. t  

 

Table.2  Relative numerical values between dynamic stress intensity factors )()1(
1 tK , )()2(

1 tK  and time t  

 

sec/10 4−×t  2 4 6 8 10 

2/38)1(
1 /10)( −⋅× mNtK  

2.9643 1.2199 5.1338 5.9281 1.4581 

2/37)2(
1 /10)( −⋅× mNtK  

4.6109 6.5209 7.9864 9.2219 10. 3121 

sec/10 4−×t  12 14 16 18 20 

2/38)1(
1 /10)( −⋅× mNtK  

7.2603 7.8421 8.3834 8.8923 9.3729 

2/38)2(
1 /10)( −⋅× mNtK  

1.1294 1.2199 1.3042 1.3833 1.4581 

 

In terms of Eqs. (44), (45), after simulative software Matlab 6.5, )()1(
1 tK  and )()2(

1 tK  gradually aggrandize from 

zero, but their trends are slow and eventually reach or exceed fracture toughness of this material with the enhance of 
time, these results will conduct the structural instability because sole variable t  locates in their numerator, and that 
the rest quantities are also regarded as real constants, therefore structural destruction will occur, as shown in Fig.4. 
Such trends are homogeneous to the outcomes also attained by means of correlative numerical calculation in 
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Literatures [49-52]，accordingly it is correct. The relative numerical value relations are illuminated in Table.2. 

CONCLUSION 

By means of the relevant representation: )/,/(),,( tytxfttyxf n= , where n  is an integral number, and the 

problem considered can be translated into homogeneous function of x and t of zeroth dimension, namely self-similar 
functions. All satisfy the relationship of this function, thus the analytical solutions can be attained by Eqs. (4), (5), (6) 
and (7) with homogeneous function of variable.τ . This measure can utilize not only in elastodynamics, but also in 
elastostatics and even in other situations. Refer to literatures [53-55]. 
 
Analytical solutions of the dynamic asymmetrical crack design for bridging fiber pull-out of unidirectional 
composite materials were found by way of the theoretical use of a complex variable function. The approach 
developed in this paper based on the methods of the self-similar functions makes it conceivable to attain the 
idiographic solution to this design of bridging fiber pull-out of composite materials and bridging fibrous fracture 

speeds 1α  and. 2α . The rudimental solution of asymmetrical dynamic crack extension problems is derived based 

on the self-similar functions. In terms of the real boundary conditions, self-similar function )(τW ′  can be easily 

deduced by means of corresponding to variable τ, accordingly analytical solutions of stresses, displacements and 
stress intensity factors will be readily computed. This case is referred to as the analogous class of dynamic problem 
of the elasticity theory. However, the present solution occurs to be the most straightforward and intuitive of all 
alternative methods appeared up to now. Indeed, relative researchers have succeeded in a mixed Keldysh-Sedov 
boundary value problem on a half-plane. The problem is of sufficient real interest, since all of the members of 
structures in which fractures may expand are of finite dimensions and are frequently in the modality of long strips. 
The method of solution is based exclusively on techniques of analytical-function theory and is simple and 
compendious. By making some observations regarding the solution of the mixed boundary value problem we have 
reasonably decreased the amount of the calculative work needed to solve such a crack propagation problem. The 
approaches of self-similar functions are still applicable in researches of mode I semi-infinite crack [56], mode Ⅲ 
crack [52-54] and mode Ⅲ interface crack [57-61] and mode Ⅲ interface crack [62-68] as well as axially crack 
[32-33, 69]. 
 
Analytic solutions of the asymmetrical dynamic design for bridging pull-out of unidirectional composite materials 
were found by way of the theoretical application of a complex variable function. The approach developed in this 
paper based on the measures of the self-similar functions makes it conceivable to acquire the concrete solution to 

this design and bridging fiber fracture speeds 1α  and 2α . The fundamental solution of asymmetrical dynamic 

crack extension problems is derived based on the self-similar functions. In the light of the concrete boundary 
conditions, self-similar function )(τW ′  can be easily deduced by means of corresponding to variable τ, therefore 

analytical solutions of stresses, displacements and stress intensity factors will be readily worked out. This is 
regarded as the analogous class of dynamic problem of the elasticity theory. However, the present solution appears 
to be the simplest and intuitive of all alternative approaches appeared up to now. Indeed, we have succeeded in a 
mixed Keldysh-Sedov boundary value problem on a half-plane. The problem is of adequate factual interest, since all 
of the members of structures in which fractures may extend are of finite dimensions and are frequently in the format 
of long strips. The method of solution is based exclusively on techniques of analytical-function theory and is 
straightforward and compendious. By making some observations regarding the solution of the mixed boundary value 
problem we have reasonably decreased the amount of the calculative work needed to resolve such a crack 
propagation problem. The methods of self-similar functions are still relevant in studies of mode I semi-infinite crack 
[56], mode Ⅲ crack [57-61] and mode Ⅲ interface crack [62-68] as well as axially crack [32-33, 69].  
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Appendix 
In this appendix we intend to do the necessary algebra involved in D  and 1D for orthotropic anisotropy, and also 

for isotropy, changing the notation in this latter case in order to make a direct comparison with Broberg [22,25]. We 

also intend to show 01 ≡D  when 21 TT −=  as mentioned in paper, and also that 1/ DD is purely imaginary for 

the possible crack velocities involved in the problem. 
 

Calculation of D , 1D  for orthotropy (for the subsonic speeds) 

Now, in order to illuminate these representations for universal orthotropy, we are going to refer to the Eq.(7) in 
literatures [16,20,22,25-27,70], where η  is replaced by τ , and we write it as  

 

                    024 =++ PNTMT                               (A.1) 
 

where          2266CCM =  

               ))(( 2
66

2
11 ρτρτ −−= CCP                                (A.2) 

 

               )( 2
6666 ρτ−= CCN + −− )( 2

1122 ρτCC 2
6612 )( CC +  

 
Now write down certain properties of the roots, i.e. the sums and products, etc. From (A.1) we will obtain 

     MNTT /2
2

2
1 −=+  ,   MPMNTT /)2()( 2

11 −−=−                   

     MPTT /2
2

2
1 =   ,      2222

2
2

1 /)4()( MMPNTT −=−              (A.3) 

 

    Write ρ/66CCr = ,  ρ/11CCd = ,  =a )( 2
66 ρτ−C ,   b = )( 2

11 ρτ−C     

     At 
22

dC>τ , when ,0<a 0<b ; presumed 1166 CC < , from Eq.(A.2) we will obtain 

=− PMN 42 2
2266 )( bCaC + )(2 2266 bCaC +− 2

6612 )( CC +   
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+ 4
6612 )( CC + 22664 CabC−                                  (A.4) 

 

Evidently 22 40 NPMN <−< , and 0<N , reduce 042 >−±− PMNN , this denotes  2
2

2
1 ,TT  are 

both positive real, therefore all of the four roots of (A.1) are real. This tests that for 22
dC>τ , we will write 

0)]()(Im[ 1 =ττ DD , which indicates that the disturbance of elastic wave cannot overrun tCd . 

 
Then putting Eqs.(6), (8) into (13) in literature [17,22], there results 

  τ,,()(/ 21211 TTSTTDD −= )([) 2
1

2
2 TT − )( 6612 CC + )]( 2

11 ρτ+C  

      =S 21TT )( 6612 CC + −2
12[C 22C )]( 2

11 ρτ−C )( 2
1166 ρτ−− CC )( 2

2
2

1 TT +  

          + 662212 CCC 2
2

2
1 TT + )( 2

11 ρτ−C 6612
2
12[ CCC + 22C− )]( 2

11 ρτ−C        (A.5)  

 

It is not difficult to test that for rC<τ , 1/ DD is purely imaginary for the subsonic speeds. We can give 

Case (1).  For dr CC << τ , remembering that we have taken the positive square root, then we will obtain  

      
))((4N
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]/Im[

2
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2
1122
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SMhCMPMg
DD         (A.6) 

 

where =′P )( 2
11 ρτ−C )( 2

66 ρτ+−C  
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Case (2).  For dr CC <<τ , then we can find  

   Im[ 1/ DD ]=
2

1

2









+ PMN

M

))(( 2
116612 ρτ−+
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CCC

S
                    (A.7) 

 

       =′′S 2
1

)/( MP )( 6612 CC + −2
12[C 22C )]( 2

11 ρτ−C 22
2

11 )( CNC ρτ−−  

           PC12+  + )( 2
11 ρτ−C 6612

2
12[ CCC + 22C− )]( 2

11 ρτ−C                            

     Case (3).  For isotropy 
 
Isotropy is regarded a special example as orthotropy, from isotropy, we will have  

   2
12211 CCC ρ== ,  2

2121166 )(5.0 CCCC ρ=−=                         (A.8) 

 

where 1C , 2C are the wave velocities in the isotropic medium, simply gives 1/ DD as a function of τ , then 

substituting them into Eqs.(5) in literature [17, 22] and (A.6), we can obtain: 
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