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ABSTRACT

The present study deals with the effect of slipthen heat transfer and entropy generation charastas of
viscoelastic fluids in a channel. The slip has besdeled using three different slip laws namelyyiélss non-

linear slip law, Hatzikiriakos slip law and asymtitoslip law. The viscoelastic nature of the flisdcaptured using
the linear version of simplified Phan-Thien-Tan@PTT) model. The flow is assumed to be hydrodigzdisnand

thermally fully developed with uniform heat fluxubdary condition at the wall. Viscous dissipati@nincluded
while axial conduction is ignored. The governingiatipns have been solved analytically and the readwehind
the observed trends have been explained in d&pécifically, Nusselt number shows a complex depemdon the
viscoelastic group, slip coefficients and the pueegyradient. Finally, a comparison between Hatmilkios slip law
and the asymptotic slip law shows that the slipoeiey and consequently the Nusselt number is higher
Hatzkiriakos version of slip law

Keywords: Phan-Thien-Tanner; entropy generation; convectieat htransfer; slip laws; non-linear Navier;
Hatzikiriakos

INTRODUCTION

There are numerous processes in the industry witherdluid flow depicts a viscoelastic nature. A minent
example is the extrusion process in the polymeusirg. Here the gap between the barrel and thewvsofethe
extruder is small and thus the concomitant flow @@nmodeled as the flow between two parallel plfigs
Moreover, the flow of melts in pipes (before exiomd takes place at elevated temperatures whichianer an
investigation into their heat transfer charactarsst

As mentioned, the rheological behavior of the fliguch processes exhibits viscoelastic charatitesi One of the
most common mathematical models to simulate visstiel behavior is the (simplified) Phan-Thien-TanfsePTT)
model [2-3] which is the focal point of study irighpaper. Additionally, the slip of the fluid atlgbboundaries is a
very common phenomena in polymer processing, affgthe quality of the final product [4].

There have been numerous studies to investigatiotiecharacteristics of viscoelastic fluids. Théselude studies
related to Couette flow [5-7], channel and pipenfl8], Couette —Poisueille flow [9] and annularvl¢g10]. On the
other hand, there has been only one study whicestaikto account the effect of slip on the hydrodyita of

viscoelastic fluids- a very extensive and detaddly by Ferras et. al [11].

Compared to the hydrodynamics, the heat transf@ipwf of viscoelastic fluids has not been studieteasively in

literature. There have been some studies pertaittinigeat transfer of viscoelastic fluids in chasnslbject to
uniform heat flux [12], uniform wall temperaturd 3] and with moving upper plate [1]. In all thesapprs, viscous
dissipation has been accounted for as it is vdevaat in polymer melts. There has also been aystfithe Graetz
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problem with viscoelastic fluids [14]. But thereshldeen no investigation in extant literature of ¢fffect of slip on
the heat transfer characteristics of viscoelastids.

Investigation of entropy generation in a systerimportant because entropy generation determinegurtieunt of
“lost work” in a system [15]. To the best knowledgethe author, there has been absolutely no iga&tin of
entropy generation in a viscoelastic fluid.

The aim of this paper is to study the heat tranafet entropy generation characteristics of theodkstic fluids
modeled with s-PTT model and subject to differemmies of slip at the wall. The flow is hydrodynaniigeand
thermally fully developed, viscous dissipative autbject to uniform heat flux boundary conditionisTpaper is the
first study of the effect of slip on the heat tr@nsharacteristics of viscoelastic fluids. Morenueis the first study
of the entropy generation characteristics of aoasastic fluid, with or without slip. In this resgtethe paper fills a
void in archival literature.

EXPERIMENTAL SECTION

The remainder of this paper is arranged as followsSection 2, the slip laws used in this study endeen

introduced and described in detail. In Sectiorh8,relevant conservation equations of mass, momeand energy
have been solved taking into account the slip ld&qressions for velocity distribution, shear sdregstribution,

temperature distribution, Nusselt number, entropyegation distribution and Bejan number have beesgmted in
this section. Section 4 gives a detailed explanaticthe results and the reasons for the trendsreéd. Section 5 is
the conclusion of this study. The no slip boundargdition is the most general velocity boundarydition used in

literature to model the velocity at solid-fluid énface. But despite its ease of use (and the caesegbiquity), this
boundary condition is an assumption and cannoebieet from first principles [16].

A fluid is said to slip when there is a non-zeragantial component of fluid velocity relative toetlsurface in
contact with it. The nature of slip depends on mfatyors like surface roughness, chemical composioif fluids,
presence of dissolved gases, characteristic leafgtre flow etc.

A slip law relates the slip velocity of the fluid the physical characteristics of the flow. Theliesr slip law was

proposed by Navier [17], and later rigorously dedvfor gases by Maxwell [18]. The slip law introddca new

parameter called slip length/slip coefficient whiirrelates the slip velocity with the velocity dient/ shear stress
at the wall. This slip law is generally used forvidenian fluids and its use for non- Newtonian flidas been
scarcely reported in literature.

An advanced version of Navier’s slip law is Navéenon-linear slip law which is given by:
u, =(Fr, )"k (1)
i YX, W. nl

For bottom wall, “+” sign is used, since shear strés positive there (according to the positiorthef coordinate
axes shown in Fig. 1 and explained in next sectiSimilarly, "—" sign is used for top walk , is the non- linear

slip coefficient whilem ( >0 )is the slip law exponent. For=1, the linear Navier’s slip law is recovered. Thiip
law has been able to correctly model the slip fanyjnexperimental conditions of Poisseuille flow-2H.

Navier’s non- linear slip law predicts that slipliveitart as soon as the fluid flows, i.e for anyrmero value of shear
stress. Hatzikiriakos proposed a slip law whichaglelthe onset of slip until the shear stress atvdlés exceeds a
critical stress [22] . The slip law proposed by handerived from Eyring’s theory of liquid viscogitlt is aptly
named as Hatzikiriakos slip law and is formulateddne-dimensional flow as:

>Z'C

<r (2

c

u, :{ Kz SINNEK, o7 0 = 7 ’\Tyx,w
0 "T

yX, W

In literature, there are various instances whertzikaakos slip law was used to model the slipcimannel flows
[11, 22].

The third slip law employed in this research papehe asymptotic slip law [ 11, 23] given by:

U, =Ky In(FKpr, , +1)

®3)
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In these equations, the slip coefficierks,, m k., K,,, k., K, are experimentally determined for different
fluids. They control the amount of slip at the wafid influence the shape of the slip velocity vsaststress curve.

The governing equations of the viscoelastic flowsgist in the continuity equatior!o u=0

mass) W =0 gu.D)u =0.(-pl + /,llDu + (DU)TJ+ F)

conservation of

rand the momentum equatior!o conservation of

p(a—u +Uu D]]uj =-0Op+ x0%u+ 008,

linear momentum) where u is the velocity vector, p is the isostatic
pressure and the viscoelastic extra-stress tensor. The lefdhside in the equation corresponds to the inertial
effects; the three terms on the right hand sideegpiation are the contributions of the pressure ignadthe
Newtonian viscous stress of the solvent, and tlseoélastic stress of the polymers, respectivelpallyi, the
equations of conservation are supplemented withnattutive model which closes the system of equati We use

a generic partial-differential viscoelastic model fo general form

Z_THJ Mo —(0' Mu +0u’ B-)+f(A—6)o- = zﬁlps', where f 6) is a relaxation function, and

L T

¢=(0u+Du )/2 is the strain rate tensor. Depending on the esef f ), popular viscoelastic models can
be recovered [1], see table 1. The material pamnspt uS, uP and\ are the density, the solvent viscosity, the
polymer viscosity and the relaxation time, respadyi. Table 1 defines the terms mentioned abevg Elasticity of

the fluid, parameter in PTT modelP/L Predicted drop in pressure for fully develofledv per unit length using
the Phan-Thien-Tanner (PTT) mod@lPexcesgsThe difference of the measured drop in presshreugh the
model and thedrop in pressure that occurs when We APexcess?2 is the difference of the measured drop in
pressure through the model and the fully developessure drop in PTTxx Shear stress at the inlet, also the
normal stress at the inlet. We: is Weissenberg Numku>/y; Wherel is the time constant that describes how fast
the polymer “forgets” its shape, <u> is the averagjecity, and y is half the height of the model.

Table 1. Expressions of thereaxation function f (¢) in the generic congtitutive equation (4), for different viscoelastic models

Viscoelastic mode|  gejaxation functionf (0)
Oldroyd-B 1
Giesekus 1+ (a/]/,ul)o-
Linear PTT 1+ (5/1/,ul) tl’(O')
Exponential PTT exp[(s/l/,ul) tl’(o)]
FENE-CR [1+ (A/,ule) tr(o')]_l
In dimensionless forms:
oo O 1 1-&(2-&8)r”
“ n/2A &
and
* - pxy
n/24
limo, =1""
Where{ -0
o, +0, -
f=1+ g# Uy =0, ng
So 2 in Linear PTT and 4 . In a same way :
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1-¢

&0

X

- f =1+

Which has a solution of

_o_ 1 (. 1-& s
Uy | z=0 _A(Z—E)kr +2—58T j
or
2 -3
u= px y2+£/1 px y4+umaX
i i

while for this research, we non-dimensionalizedrgwpiantity; that with our boundary conditions (cdised in the
next section) give us the following relations:

u=Poyz ey,
n n

eN? 3 4 2 3 2 2 3 Py
?(va +4pIT, Y2 +6p 1Y 2+ 4k u=-*y(y-h)

is comparable to 21

To use the correlations above, the tétfh,must be calculated at the giverand We. The first normal stress
difference, N, is calculated as Ntxx - 1yy, but these stresses are measured at the inkErewy = 0, so N =xx.

3 2
Vy:_ux ﬂV:—pxx(y——yh C]L
3 2 With BC of © ~Vv(0)=0

from continuity 2u and from symmetry
pxxh3 — 6LV,
py|o=0 V(h):_Vm=T* P= h? X* + p,
(7077 at BC H for  half length
2 2
PP. e(ﬁj Y- ap, :E(LJ u__ EX(X_lj
W, m/ h h 2\h with  the velocity of Vi hhih and

3 2 342
Vin h h As ¢-0 we have n n

p=Re, 1=, . ReUWOU=O(-pl +u[0u+(0u) |+T)
solution of

9 [Tx Txy} _
o|T,, T,

Wi ((u.D)T +H@uT+TO Y ])
+44, [ (Ou)+(Qu)" |

Where is for each component

ul= ui +vi
1)

The extra stress contribution due to the polymeivien by the following Oldroyd-B constitutive rélan:

AT
T+A—= u
A - 2T

So we should change

Also the general form PDE for the

1)

@)

®)
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where the upper convective derivative operatoQloiroyd derivative) is defined as

AT _ 9T T
= "3 ” (uO)T - [(DU)T +T(0u) ] (4)

The polymer is characterized by two physical patanse The viscosityjp and the relaxation time The fluid is

ou
treated as incompressible with a constant depsitie flow equations rea¢)E +p(u.D)u =lo,00=0

T= Tll T12
; ; T121 T22
.The extra stress tensor is symmetric:

Therefore, it is necessary to solve three additiegaations, for the three components in Equatioto@ether with
three equations given by Equation 5 for the presand two velocity components.

The Weissenberg number is defined as:

R

()

where Uin is the average fluid velocity at the inR is the radius of the cylinder, aihds the polymer relaxation
time. (An alternative name, which is often usedtfés nondimensional parameter, is the Deborah muni zero
Weissenberg number gives a pure viscous fluid (lastieity) while an infinite Weissenberg number itim
corresponds to purely elastic response. Due tadhgective nature of the constitutive relation, sodution stability
is lost with the increasing fluid elasticity. In gutice, already the values Wi > 1 are considerech dsgh
Weissenberg number for many flows of an Oldroydtidf By adding least squares-type stabilizatiomteto the
Galerkin finite element formulation, you can impeowstability and obtain solutions over a larger earaf
Weissenberg numbers compared to a standard Galerulations. The present model makes use of sems$t-
squares stabilization technique. The flow is statiy, and the problem becomes dimensionless by d&itJin, and
the total viscosity) =ns +np. The nondimensional equations system is the\idatig:

Re@.0)u = 0.(~pl + g, |0u+ (0u)" |+T)
T+Wi(uO)T-[@QUT+TO Y )

_ T
=, (Qu)+(@u)" ]
(6)
where the Reynolds number is Re = R WJihp, and the relative viscosities of the solvent awdymper are,
o
lup =—=1- lus
respectivelyus =ns /n and n . Weak formulation of the above equations andsthdilization

terms needed for the extra stress equations arghoetn here. Because of the flow symmetry, you rhodly the
upper halves of the channel the cylinder. At thenctel centerline, use the symmetry conditions of rermal flow

un=0

0

and zero total tangential stres(sg'n)'t =V wheren andt are the boundary unit normal and tangent vectors,

. . . L + =
respectively. On a horizontal line of symmetry, lager condition is reduced t%’uselz T, =0 . At the channel
walls and the cylinder surface, the model useslipacenditions for the velocity together with theralition for the
normal component of the extra stress:

(T'n)'n =0 .Polymers are unable to exert a normal force enwhll because no polymer can span the wall
boundaryHalf-Inlet Here you specify the developed parabolic velocitfife and the corresponding extra stresses
components:
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3 2
u=—»0-s

5 ( )

2
[ du
T, = Z'UPWI(G_yJ
ou

T, = /’lp(a_yj
T,,=0

()

where the geometry edge parametgaries from 0 to 1 along the half-inlet bounda®utlet At the outlet, use the
pressure boundary condition for developed flow; dhéy stress acting at the boundary is due to tesqure force

pout:

on=-p,n @®)

A schematic of the physical model under study @ashin Fig.1. There are two parallel plates segaréty a gap of
width 2h. The fluid flow between the plates is maintaingdalconstant pressure gradienpefwhich is numerically
a negative quantity. Uniform and equal heat fijug imposed on the two plates. The heat flux is rfextlas positive
into the walls. The fluid is viscoelastic and itsess-strain relationship is captured by the sifigoliPhan-Thien-
Tanner model. The flow is hydrodynamically and thally fully developed. The slip at the wall is camd by
Navier’s non- linear slip law, Hatzikiriakos sligw and asymptotic slip law.

The x- coordinate is along the centre line of tharmel while the y-coordinate is perpendicularhe tentre line
pointing towards the upper plate. The fluid flowcocs in the direction of positive x.

!/
/
/ z /
/S S As V4
/ / /&
/ / --"’5‘@ T4
/o8 //

R Y TR Vv
et V4 /4
““\\‘\\‘;‘“-. P T S/ ’jr’
N ,,/ g4
- I N,

Fig. 1: Schematic of the physical model under study

In this paper, we wish to study phenomena relatedscoelastic fluids. These fluids show charastas of elastic
solids as well as viscous fluids. Whether a fluidwd respond elastically or viscously will deperat only on its

structure but also on the kinematic conditionsxjiexiences. A viscoelastic material will returnit®original shape
when the external stress has been removed (etasponse) but it will take some time to do so (@iscresponse).
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Some amount of stored energy will be dissipatestcfuis response) while some will be recovered (elestponse).
For viscoelastic fluids, shearing motion may gige to stresses in normal direction too.

The simplified Phan-Thien-Tanner model of visoctétafuid behavior has been used here. This mosleerived
from the network theory and has been used extdgsivditerature to replicate viscoelastic fluid Hsevior [2-3,8-
13]. For this model, the constitutive equationiigeg by [2-3]:

f(trt) + Ax =n(Ou+ (Ou)") ©)

Here,f is a function of trace of the stress tensdiis the relaxation time/] is the viscosity coefficient and stands
for upper convective derivative as shown below:

__0t
T =E+UD]T—[(DU)TD1:+TD]U] (10)
The functionf can take two forms- linear and exponential. Thedr form [3] is given by:
A
f(trt) =1+—trr (11)
l
While the exponential form is given by [2]:

f(trr) = exp(%trr) (12)

Here £ is the elongation parameter which controls the isti@aning behavior of the fluid. Higher is the walof £,
more will be the shear thinning behavior of thedIurhe linear form is a linearized version of theonential form
and is accurate when the term in the bracketsfohbnd side of Eq. (9) is small. According to Tanfi24], the
linear form is accurate when the molecular defoiomats small, i.e. in the case of weak flows. Pflmvs and
channel flows are weak flows where the results ipted by linear form will be close to the exponahform. For
this reason, in this research article only lineant of s-PTT model has been considered and thétsgmesented
thereof.
RESULTSAND DISCUSSION

The heat transfer and entropy generation charatitsriof the exponential model will be studied irseparate,
upcoming paper.
For the EDL layer we have

2
dy _2nze zvesinh(—zvewj (13)
dx? &€, k,T
— Z,el/’ __X k = 2 I’& Z/2e2

v kT *=a and gk T (14
d? .

7 =(3?sink{p) as)
dd_‘;/—:O atXx=0 andw:z atY:lwhereg?:i'?t (16)

b

Z—Z = V2(ka)[cosh@) - cosh(@,)]2 (17)
¥ = 4tanh* tan?E%je‘ka(l‘x) (18)

For the case of planar, fully developed flow comséd here, the equation for momentum balance redoce
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dr

d;x = P (19)
Integrating once, we get:

Ty = PxY*T G (20)
The constitutive equations for the simplified PT®del reduce to:
ou
f(T + T, )T, =2AT y*(a_yj (21)
f(t,+r,)7,,=0 (22)
ou ou
f (Txx + Tyy)z-xy - O(G_yj + /1 r yy(a_yj (23)
In Eq. (13) , eitherf (7,, +7,)is 0 or7, =0. If f(7, +7,)=0, unrealistic results are obtained. This leads to
r,,=0.
After substitutingl’yyzo, divide Eqg. (14) by Eq. (12) to get the follogin
_2(

I, = F(Tyx) (24)
So, the set of governing equations reduces to:

Ty = PY*TG (25)

_2(
I= F(Tyx) (26)
r,,=0 (27)
ou
f(T, +T,)7,=1 (a—yj (28)
The above equations are non-dimensionalized wétdtlowing dimensionless variables:
X u r T
y'=ylh x'==,c'= 8 y=Yg=_P Ty =T =
™" T U n n
h h? h h
AU

And De = T (29)

Here,De is the Deborah number; it is the ratio of elashavior and the viscous behavior of the flow. Uhis
characteristic velocity, mostly the average velooitthe flow.
Since the analytical solution would be

d’v, dp
e - “PLEp=0
H d¥* dz P 50
0 =-2(nze) sinh{%} (31)
— L
G, = kT v, =-2 and E, _L5 (32)
L(_dp) Vo £
dz
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d*v, 2G/(E, d°@
dk?  (ka)? ok

+1=0 (33)

d_‘/7=de=0 at X=0 and Qi=<_‘ and Vv, =0 X=1 (34)
dax dax
-
v, =5(1—X2)—&2E3 1—Z (35)
2 (ka) &
I, = J‘vz,odAC (36)
A
P _ |
p=——=-2sinh{) and |, =—>— (37)
nze 2vyn, Zea
I, =-2[ v, sinh@)d(%) (38)
_ 4G, EE,
Is:(|1_|3)_((leJ(|2_l3) (39)
4 1+ ne* e'® . A . . .
_ 8 |1-2pe*tanh*(ne*®) 1-2ntanh™ ()
I, =— kay 2 - 2 (41)
ka (7e®)” -1 n--1
4 ”eka ,7
|, =—— - 42
3 ka{(qe"a)z—l /72—1} 42
n =tanh§¢ /4)e™ (43)
: _ BIn(1-1)
Li,(B) = —jo — -t (44)
. +1,=0 (45)
2
Sl g (46)
g
G, (ka)?
U
E (47)

S 1-4G,G,(1, - €l,)

By using the dimensionless variables, we get thredimensional form of the governing equations asshbelow:

r'y, =Gy'+c, (48)
r', =2De(Gy*+ ¢,)’ (49)
g_;: =[1+ 2eD& [Gy+ ¢, ][ Gy+ ¢] (50)

The velocity boundary conditions are symmetrie, the same boundary conditions are applied orotlver and
upper plate. This meara’, = 0. So,

ou'

— =[1+2:D€’[GyT* [ GY] (51)

oy

We integrate the above equation once to get:
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12 14
u'(y')=GTy +2eDE G3y7+ c, (52)

Here, C', is an unknown constant whose value will depentherboundary condition/slip law employed. The non-
dimensional form of Navier’s non- linear slip lasvgiven by:

1 —_— [ 1 k IUm_l,7m
u', = (Fr',,)" "K', where k' | :nh—m (53)
At y'=1, the above equation reduces to:
u', = (-G)"k, (54)
Using Eq. (25) and Eq. (27) we obtain the following

G  2:DE€G

-G)"k'y =—+——+¢¢ (55)

( ) nl 2 4 2
G 2DeG
=c,=(-G)"k ——-Z=—= 2 (56)
2 4
On the other hand, the non-dimensional form of Hatakos slip law is given by:
ulW = klHl S|nh|:¢ (kIHZT Iyx,w )] (57)
k k,,7U
Here k', =L k', =-"Z— (58)
HLT T H2 h
At upper platey’=1, the equation reduces to:
u', =K'y, sinh[- (k},, G) (59)
From Eq. (25) and Eg. (32), we obtain the followirsdue of®? for Hatzikiriakos slip law:
: G 2DeG
¢, =k'y sinl[-(k, G -—-——— (60)
2 4
Following the same procedure for non-dimensionahfof asymptotic slip law:
u', =Ky InFK 7", F1) (61)
Here,
k K,/7U
k'y=-"2,k',=-"2 (62)
AT A2 h
which gives the value df> as
G 2cDE€G

¢, =K'y In(=k'y, G"'l)_E_T (63)

Summarizing, expression for non-dimensional vejogibfile between the two plates is given by Ed)(2
2

14
u'(y')=G7y +2e D€ C?yT+ c,

Where,

/(_G)m k' - 9 _ 2:eDEG Navier's non-linear slip law

m2 4
¢, = _< k'Hlsinh[— «', G)] _% _ 2t Df G Hatzikiriakos slip law
G 2cDEG asymptotic slip law
k'yIn(-k',, G+1)—-———-————
m IN(=K', ) > P

N—

(64)
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The two dimensional energy equation for the thelynahd hydrodynamically fully developed flow of @sweous
dissipative fluid where axial conduction is negéetts given by:

oT 0°T
pPCU—=k—+@ (65)
0x ay?
Here, @ is the volumetric viscous dissipation rate in flogv. For the flow under consideration, it is givien
ou
P=Ty— (66)
oy

This reduces the Eq. (27) to
PC, ua—T ka T +7 au (67)
ox ay> "oy

The pertinent (thermal) boundary conditions forabeve equation are:

=q (68)
oy |, oy

y=h

Since the flow is thermally fully developed and jgaib to uniform heat flux boundary condition,
oT _ dT,

ax dx

= constant, (69)

which means that the axial gradient of the tempegadt any point equals the axial gradient of tleemtemperature
and is a constant.
This reduces Eq. (32) to

dT, _ o°T ou

= 5 + I'yx_
dx oy oy
There are two dependent variables in the abovetiequal,, and T . To eliminateT,, the above equation is
integrated once across the gap between the plates:

(70)

d m
j,oc ud— dy= j k yx y (71)
Usmg the boundary condmons mennoned in Eq. (8@) obtain the following:
%T c_udy=2 +j']r @d (72)
dx_hpp y=2q 3y )
h
du
2+ |1, —
dT, a _Ih > d
= = (73)
dx
j pc,udy
~h
Insert this expression in Eq. (32) to obtain tHéfeing:
h
du
29+ j X
dy 0T ou
pCU—; =k_—S+1,— (74)
oy oy
j pc,udy
-h
The non-dimensional form of temperature is intregtlas:
k(T-T,)
S (75)
q(2h)
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Using the non-dimensional variables introduceddn &4) and in Eq. (77), we obtain the non-dimenaidorm of
the energy equation as:

J];Z" ﬂ
2 yX d ' '
j 62? Brg—u u'x Br=t Y - - u (76)
y y I u'dy' j u' dy
-1 -1
WhereBr is the Brinkman number for viscoelastic fluidseyivby[ 1, 12-13]:
2
= (79)
(2h)q
Using the expression for velocity profile in Eq5J2we obtain the following:
3
j u'dy’ - €DE'G +£33+ 2¢, = Asay) (80)
Similarly,
1 ] 2
j r'yxd—ul =28 L 0.8xeDEx G' (81)
o dy

du
Substituting the expressions far, d_ and those in Eq. (40) and Eq. (41), the energgiou reduces to:
y

J ~+G?Brx y*?+2¢ D€ G'x Brx y*-
y*

eDe’G? ay Gy (82)
<[eoee .G . ] L 2 oY e o

o Tl T A
2
B{Zi +O.8nge2xG4}
Where,IZ: = (83)
A
Integrating once with respect yo
13 5
dé 2By 2£DeZG“>< Brx y°
dy 3 5
eDEEG o G o, (84)
—| ¢eDE’G® G 10 7 +Ey Tyl _
Kl ———y® +—vy®+c, V|- — + K=0
{ o VY e y} A
WhereR is a constant of integration.
Since—gl =0= ? =0 (85)
y'=0

Inserting the value oK in Eqg. (44) and integrating the resultant equatiba,following is obtained:
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~ | 2¢DE’G'Br KeDE€G ¢eDECG|
o)+ 30 60 e V7
60A

_ (86)
G’Br — G Ke', ¢
-(KG)/24-—= |y*~| —2+2 | y®+
{ (KO 24A}y { }y

= I

=0

2 2A

Here, K is the (second) constant of integration. To fisdvialue, we use the boundary condition t@§t) = 0

_ K =_|2%DEG'Br_KeDEG _£ DEG|_
30 60 60A
2 ~ 87)
G Br_Key/2a--C |+ K2, C2
12 24A 2 2A

To conclude, the expression for non-dimensionaptnatured is given by Eq. (46) where the value of constdnt o

integrationR is given by Eq. (87). To obtain the best profiferelocity number also we can consider the follogvin
formulations :

v, oL =g O°T , Pr(dv, 2 88
z 0z f aXZ Cp dx .
" 2
or _dT, _dT, __a" , u r [ dVZj N .
0z dz dz  pv,C,a P V,c,a" 0l dx
T,-T - )
o=— and Br= p(@’( dp/"dz)/y) "
(q"a/k) a
dze \_/Z 1 Cﬂz 2 (ﬂz P
EJ{V j{“ BrL( o j OR} ] Br( oij (91)

1+BrJ

6 =Br[E, - (x-1)A, -C,]-=——[F, - (x-1)B, - D,] (92)

zm

_l_8elﬁs 1+,7eka _i H kay _ 13 (_ kay | _ H .
R TRE Ml_ ,/ekaj i e - Li e - [Li, () - i, (o]} -
+32(G£)2E§{ 11 }
(ka)*  [1-(7e)® 1-n?
8G,¢E, 32(G,£)’EZ 1
As = (k) [Liz )~ Lo o]+ == = (94)
4G,¢E, _
R [Li, (7) - Li ()] (95)
Cg=i 8Gl£l§ [ka{lefyeka) Li, (- neka)} {L|3/7e"a)—Li3(—/7e"a)}]
12 (ka) 6)
+ 16(Gl€)2 E52 |n[ (”eka)Z j
(ka)* 1-(n7e')?
Dg - i 15 E 4G15E [L|3(/7eka) _ Lig(_”eka)] (97)

2 (ka)? (ka)*
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X 8G,EE.[ [ . o = . o -
=y el o) - L e o} 26 ) - e
F2E < (98)
16(G,6)°E2 | ( (ne")?
+ In —
(ka)* 1-(7e'™)?
X4 X2 G E’EX® AGEE. [ ., imy .. e
=-=_+= - s s —Li,(~ 99
Tt Tt e L)~ Lis(re ) (©9)
Q= 2\NLa v,dx=2Wav,,, (100)
_ Q _
= = 101
Q 2aWy Vom (101)
a1 4GZE_| (ka)¢ i, . L . . .
V= [ V0K =3* (kla)3 [ > +{Li, (") - Li, (-ne)}-{Li, (7) - le(-n)}} (102)
Q= 2(_dp/ dZ)a3\N (103)
3y
A- H
Q= (104)
3u,
Ho _ _L -1 (105)
ﬂ 3\/Zm 3Q
;= 2a(—dp2/ dx) (106)
lofvzm
Re=4ap v,/ u (107)
f Re= _8 =i (108)
Vzm
Which corresponds to the EDL layer of
d2
pres = (ka)’@w (109)
_ ¢ sinhkax) (110)
sinhka)
o _ 3
v, = 1 @-x*)- ZESGlf 1- SI!’]h(kaX) (111)
2 (ka) sinh(a)
— 1_
I, = —2I0v2$d2 (112)
- 1 2E.G,¢° 2E.G,&?
l.=-2a|=(,-1.)-| ——2 |l +—=1 | 113
s a{z( + 7 1) ( (ka)? J ° " ka)? sinh(ka) 7} (113)
. _coshka) -1
|, =l =——"—"— 114
2= 1le ka (114)
1 2 . 2
ls=|—+ hka) - hka) -
5 {ka (ka)Jcos ka) (ka)25|n ka) (ka)? (115)
I :%[k—zsinh(ka) coshka) —1} (116)
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a = & /sinh(a) (117)
aG (ka) (I, -12)
5
E, = ¢ | (118)
1+ 4aG,G,é (1, - sinh7(ka))
g =1_ 2G,& °E, 1 Coshka) -1 (119)
™3 (ka)? (ka) sinh(ka)
f Re= —— 24 :2: 24(&j (120)
1 6G,¢ °E, 1- coshka)-1| Q U
(ka)® (ka) sinh(ka)

-1 &[(ka)sinh(ka) - coshia) +1]

"3 (ka)® sinh(ka) (121)

2E2G2EY

K h(2k 2k
" ka)® sinh? (ka) [sinh(2ka) + 2ka|
AE G, E?
_ 122
& (ka)® sinh(ka) (122
2E.G,¢?
0 :35—_15 (123)
(ka)” sinh(ka)
_1 4E G E :
C ——==(k h —2sinh
° T 12 (ka)45|nh(k )[( 2 coshi) - 2sinh(ka) (124)
2
Glf 2
g h@k 2(k
+2(ka) sinh?(ka) [COS eka) + 2(ka) ]
_5 _EG¢? 125
924(k)[()2] (129
x* AE G¢* _ _ . _
E,=—-——=>2 ___|(k h - 2sinh(k
o =12 k@) sinhi ke coshlea) — 2sinh(ka) -
26254 - 252
h@k 2(k
2(ka) sinh?(ka) [COS (ekax) + 2(ka) "X ]

_x2 2 _EG{? 2o2 _ . Sinh(kax) 127
ey, (6 x) (ka)* {(ka) X2 sinh(ka)} (127)
Withouth the slip wall effects we have :

a a 1
T Z\NI Tc,p;v,dx _ L Tv,dx _ _[0 Tv, dX (128)
prC aVzm \_/zm
(129)

i)
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Br[ G,y ok (“_B”j "H,,d%
V
6, = L (130)
Vzm
GvH = \_/z[EH - (Y _1)'6\9 - CH] (131)
H,, =V,[F, - (x-1)B, - D,] (132)
Nu = hDh = 4aq” :i (133)
kf kf (Tw _Tm) Hm
Nu= 4fsz ; (134)
+BrJ \a
Br| Gwm—( v ]j H,,dx

The most relevant non-dimensional parameter in ection is the Nusselt numbeXy). It is a dimensionless form
of the heat transfer coefficient near the wall (HTC

HTCx4h
Nu = R (135)
(for parallel plates, the hydraulic diameter is tiivoes the gap).
For convection in a channel, the HTC is defineteims of the mean temperature of the flow:
HTC=qg/(TwTw) (136)
Writing in non-dimensional terms, the Nusselt numieeluces to
-2
Nu=— (137)
8
1 1
ju'edy' j u'g dy
Here, 8, (mean-dimensionless-temperature}: =21 — (138)

ju'dy'
-1

The numerator of Eq. (51) is obtained by substitutthe expressions for dimensionless velocity psfand
temperature profiles from Eg. (25) and Eq. (46peesively.
AG A AxeDE G . (2)_ BG Be DeG (2
+ + Ac',x - - -Bxc, -

! 5 7 7 9
[ur6dy'= _ — (139)
1 CG CxeDEG 2Cxc, Kx G KxeDéG =
- - - - - 2xKc!,
9 11 7 3 5
Here,_
| Keh +C—I_2
2 2A
S
B=| B k) /2a--& (140)
12 24A
c-|26DE€G'Br_KeDEG ¢ Dé G
30 60 60A

Thus, substituting the values Af B, Cfrom Eq. (53) into Eq.(52), we calculate the nuater in Eq. (53) and get
the expression f06’m. This is then back-substituted in Eq. (50) to obthe value of Nusselt number.
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For the special case of Newtonian fluid with zerscous dissipation, the Nusselt number reduces2é &hich
shows a perfect match with the data in availalégdiure [25]. For any non-Newtonian fluid, theeraf volumetric
entropy generation rate is given by [15]:

2 2

S'S"'gen:L2 (6_Tj +9T) 1,2 (141)
T 0x ay T

Substituting the value oppfrom Eq. (28)

e _k|(OTY (0TY| 7, du

S" o= || = | *| = | [+ (142)
T 0x oy T dy

In non-dimensional form, the above equation redtces

du
' 2 2 '
s ew+1z(¥) o, S an
Pej' u' dy Loy +11"\ oy
-1

1+ BrJl'r'yX
-1

2 2
N, =&, e W

= T
+= e ey @D " dy

2h
In the above expressioN; is the entropy generation numbe/,is dimensionless heat flux equalira%(_l_ﬂ and

w

pc U(2h)

Pe is the Peclet number which has the expressieﬁki. For the case treated here, we have neglected axia

conduction and that meafde — o . This reduces the expression for entropy generatio
2

N oW [98) Brxy . du

© ey oy')  (By+1) T dy

In this expression, the first term on the right ates entropy generated due to heat transfer andettend term
refers to the entropy generated due to fluid ficti

(144)

The average non-dimensional entropy generationfoai@ cross-section is given by:
1
I N dy'
<N >=2— (145)
2
The expression for non-dimensional entropy geramati Eq. (144) conveys the information about titaltentropy

generation rate. But it does not show that ouheftivo entropy generation mechanisms namely, haasfer and
fluid friction, which one dominates. This informatiis provided to us by Bejan numtizz[26]:

_ EntropyGeneratedFromHeatTransi

Be (146)
TotalEntropyGenerated
In the current case, this reduces to:
Gy +1)* | oy’
Be:[ Y+ oy (147)

S

In the preceding sections, the problem statemesibken presented and the mathematical equatiorsrgog the
hydrodynamics, heat transfer and entropy generatianacteristics of the physical model have beemditated. In

666



A.J.Kekha J. Chem. Pharm. Res., 2016, 8(8):650-668

this section, the results will be presented throsigitable figures and tables. The reasons forrtras observed will
be discussed threadbare and an attempt is madainanre insight into the physics of slip flow dseoelastic
fluids.

An important parameter of interest in the studyistoelastic fluids is the viscoelastic groura’De2 - the product
of elongation parametef and De’. Deborah numbeiDg) can be interpreted as the ratio of elastic fotoesscous
forces. A high value oDe ensures that the fluid behaves like an elastiid sghile for low values ofDe, its
behavior will be close to viscous liquids. For thésison, the results in this paper are presentetivto different

values of D€’ -namely, 1 and 4. The results have been divideal timee sub-sections: Navier's non- linear slip
law, Hatzikiriakos slip law and asymptotic slip lalue to symmetry, the results have been showoribyrone half

of the channel width. Finally a comparison hasnbegade between the results for asymptotic slip &
Hatzikiriakos slip law.

For Navier's non- linear slip law, the values ot tpertinent parameters are shown in Table 1. Thee vaf
Brinkman number has been taken as constant betaisdfect ofBr on heat transfer characteristics of viscoelastic
fluids have already been studied in literature 142-

The values of the non- dimensional pressure grad@&yn non-dimensional heat fluf/(), slip coefficientsk’,, and
m are consistent with those used elsewhere infitegg11]. Form, a value of 1 makes the Navier’s slip law linear
while that of 2 relates to Navier's non-linear dhpv.

Near the core, the slope turns to zero for eacfil@rd his can be explained as follows. The appavistosity of a
non-Newtonian fluid is expressed as:

PIERE s
ou' 1+2eDe’x7’,
oy'
2
As the value oféD€ increases, the apparent viscosity decreases. &teeake in apparent viscosity is more
pronounced near the walls where the shear strefslgﬁ) are higher. It means that the shear thinning \iehaf

(148)

2
fluid is enhanced with increase D€ , leading to higher velocity gradients [27, 28].drninciple, sinceDe is
defined as the ratio of elastic forces and visdouses in the fluid, a high value &fe means that the viscosity of
the fluid will be low and the shear thinning belawvill be enhanced.

2
A more mathematical approach to understand thiy isoking at Eq. (25) which conveys that an inseei eDe

causes the velocity to increase. Since the velatityhe wall is fixed by the slip, the increasdei$ mostly in core
region. The increase in core velocity, without ahgnge in velocity at the wall, causes the velogigdients to rise.

CONCLUSION

This paper analyzes the effect of different sliwdeon the heat transfer and entropy generationactexistics of
viscoelastic fluids. The viscoelastic behavior wagdeled through the linear version of simplifiedaRT hien-
Tanner (s-PTT) model. Three different slip lawsluding Navier's non-linear slip law, Hatzikiriakatip law and
asymptotic slip law, were used to capture the afighe wall. The flow was hydrodynamically and thaly fully
developed. A uniform heat flux was imposed on thalsvand the effect of viscous dissipation was tak#o
account, while axial conduction was ignored. Thevegoing equations for mass, momentum and energy
conservation were solved analytically and exactresgions for velocity, stress, temperature, entrg@yeration,
Bejan number and Nusselt number were obtainedfdllweving conclusions can be drawn from this study.

1.For different values of slip, the velocity profithanges but the velocity gradient remains the sdarhas, a
change in slip coefficients for symmetrical slipillvalter only the advection of the fluid momentubnt not its
diffusion.

2.The shear thinning behavior of the fluid is enhahegéh increase in the value of viscoelastic gr(ﬁ:IDe2 . This
effect is more pronounced near the wall where tigasstress is higher.

3.An increase in slip coefficients/ slip velocity Wiéad to an increase in the temperature of the thecause of an
improved heat transfer rate at the wall.
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4.The Nusselt number has a complex dependence ovisteelastic groupEDez, the pressure gradient and the
slip coefficients. In general, an increase in the coefficients will enhance the value N because of improved

heat transfer rate; an increase in the valugBfe? will also lead to an increase Mu. But for higher values of
pressure gradient and slip velocity, an increase e’ will lead to lowerNu. This is attributed to the high flow

rate at high pressure gradient aae’ , which brings down the average temperature.

5.The entropy generation rate decreases with incrieaskp velocity because, thermodynamically, thietion at
the wall is a source of irreversibility. A high val of slip suggests that there is less frictiosistance to the flow at
the wall and thus less irreversibility.

6.The Bejan number of the flow was found to be clas# for all the cases considered. Thus a reseagehppling
with the problem of entropy generation minimizatifom viscoleastic fluids is advised to concentrhis efforts
more towards the irreversibility due to heat transf

7.Bejan number is lowest in the vicinity of the wadicause the velocity gradients are highest there.
8.Between the Hatzikiriakos and the asymptotic shipd, the slip velocity modeled by Hatzikiriakogpslaw is
higher. This leads to higher value of Nusselt nungrel lower values of entropy generation ratesHatzikiriakos
slip law.

In future, the author intends to explore similarepbmena for exponential formulation of s-PTT moutelan
upcoming paper. Moreover, the entropy generaticalyais covered here can lay the groundwork for atrdpy
Generation Minimization (EGM) analysis [15] for foer research in viscoelastic fluids.
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