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ABSTRACT

A method of distributed mutual information is proposed for selecting secondary variables in a soft sensor. The
mutual information between the predicted primary variable and the secondary variables is obtained by estimating
the probability distribution of every secondary variable and the predicted variable. This information indirectly
reflects the linear or nonlinear correlations between the predicted variable and the secondary variables. A threshold
value is obtained by t-test approach as a criterion to judge the correlation of variables. Subsequently, the variables
whose mutual information is greater than the threshold value are further screened to be selected as the relevant
variables or to be discarded as weakly relevant variables. Finally, a soft sensor model is built based on the support
vector machine algorithm with the selected secondary variables.
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INTRODUCTION

Data-driven soft sensors have been developed apignmentedfor a long time. They gained on populaxiiy the
increasing availabilityof recorded data in the g industries and availabilityof computational powo process
the data. The collected data,also referred to steridal data, can be exploited by statisticalaratimme learning
techniques to obtain additional informationthat ds: used to make decisions towards more efficiewtsafe
process operation. This kind of information cam,ifstance,be an instant prediction of the varialiat are related
to theproduct quality, which can be achieved usiniine predictionsoft sensors, or the estimationwfent process
state, which can beachieved using process monitana fault detection soft sensors[1-2]. Howeves thsk is not
trivial because historical data are often datalithinformation poor (Dong &McAvoy, 1996) and thime
themodel building on its basis is a challengindstas

The first generation of data-driven soft sensolisdeon offlinemodelling using the recorded histatidata. In such
a case, thecollected historical recordings are tmethe model identification.This step may fortarsce include the
identification of optimalweights of an Artificial &ural Network(ANN) or principal components of a rieipal

Component Analysis(PCA)-based soft sensor[3-4]. i@, in order to guarantee the success of thenesfft

sensors, there are several conditions that hawe thulfilled.Most critically, the historical dataak to contain all
possible futurestates and conditions of the procEks includes not only thestates in which thecpss can be
operated but also states relatedto environmentahgds, changes of the process input material&etn if the

collected historical data contains all the requiredess states, another difficulty is to select adeh type, and
itsparameters, in such a way that the model carposimend all thedifferent conditions. This resuttshigh model
complexity, whichin turn demands and a large nunaféristorical data for the modeldevelopment.
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A prominent issue in the process industry is theueate online measurement of important quality petars to
ensure product quality, smooth continuous unit afi@n, and maximum production capacity. As produrcti
processes involve a large number of complex phigiteractions, chemical reactions, and conversiod transfer
of materials and energy, existing hardware canmetty yield accurate on-line measurement of quadarameters.
Instead, soft measurement technique estimates pyrinaiables indirectly by mapping the relationshigtween
readily measured variables and the primary vargalleat cannot be directly measured according teetaos
optimization rules.

The first step in the implementation of soft measuent technology is the selection of auxiliary &bkes. The
auxiliary variables are selected mainly based avsisieity, accuracy, specificity, and robustneskeTimportance
of variable selection has been mentioned in trerdttre [5-6]. A well-selected set of auxiliary ieddles can
effectively overcome the dimensionality problem amgrove the model's validity. One way to seleckibary

variables is to identify a set of measurable aamylivariables that affect primary variables basedanechanistic
analysis. An alternative way is based on a stafistanalysis of the correlation in the sample dataxclude
irrelevant variables. Variable selection methodselbaon PLS and PCA have been reported in the tliterd7].

Other variable selection methods are based on minf@mationcalculated indirectly from the entromnd

conditional entropy [8]. Another approach estimgtest probability density function (multi-dimensial Gaussian
distribution) to determine the input variables afeural network according to mutual informaftbn

In this paper, the number of auxiliary variablesiétermined by mutual information. An example diraating the

concentration of phenol with a soft sensor modeisifates how to calculate the mutual informaticiween

auxiliary variables and primary variables from aafesamples. Subsequently, a threshold is detexininy the t-test
method for judging the correlation between the priyrvariable and every auxiliary variabé, and the variables
meeting the threshold criterion areselected. Aipallsoft sensor model of phenol is refined by reimp redundant
variables.

MUTUALINFORMATIONAND T-TEST
Mutual information is defined as the amount of mfiation of a random variable that is contained mother
random variable. The mutual information of variabbetween X and Y is definedds

1(X:;Y) = [[m(x, y)Iogmm(;y) dxdy

bm &Y,

wherem(x, y)describes the joint probability density of X andavidm, (X) andm(y) respectively describe the

marginal probability density of X and Y. A high val of the mutual information means variable Y corgtanore
information on variable X, thus, a greater corietatbetween the two variables. Therefore,mutualrmition can
be used to select auxiliary variables in a sofbsen

In the case of unknown variangé, estimation and hypothesis testing for the meamnevaf a normal population is
commonly carried out with t-statistic.(Assumethempte | ~ N (1,0°) (for mean valugi and variance
I -m

02),thesampl{sll, l,,...,1,,]of general statistic, the statistiFs= ~t(n- 1)is constructed with the mean

valuel and varianc&? .Given the problertd, :m=1,,H, :m# |, (wherel ; describes the correlation between the

primary variable and other random variables) ardeuthe testleved, the probability of an unlikely event is given

by P{ | —m >t (n —1)} =a and the rejection domain Is_¢, _ (n-1)|0O _ . The
s/+/n 2 ( w, . n } {tz(n l),+ooj

hypothesis is rejected when the statistics valuengs to the rejection domain; otherwise, the hipsis is
accepted.

Since t-test is used here to find the maximum mealuel of mutual information for accepting the

Omax

nullhypothesi€®, this is a recursive process tdr, .Assume the mutual information between the primamsiable
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and a set of normally distributed random varialigds . Tests are randomly repeated n times, the meare \aid

— n n
variance of correlation ade=2|i andS? = LZ (|i - |_)2 .Given a test levela, t,,,(n)can be found

i=1 i=1

IOmax = I_+ta /2(n) \ Sz / n (2)

: : | -1 - , : :
is obtained from the formujla—=222|=t,,, (n). |, .nitiallyreflects the highest mutual information teen

VS In

the primary variable and unrelated variables. bfeoto ensure certain redundancy, the thresth_[I(jd1 = dll
is determined finallyd, [1[1.0,1.1].

from a table. Finally

Omax)

VARIABLE SELECTION ALGORITHM OF DISTRIBUTED MUTUALINFORMATION

John et al. divide input space into three categpiie., strongly relevant variables, weakly refgveariables, and
irrelevantvariabldy”. The optimal variable subset should not contaialévant variables. Because inclusion of
weakly relevant variables leads to variable redangathe optimal variable subset should contairy attongly
relevant variables but exclude weakly relevantaldgs and irrelevant variables.

Considering the correlation between input varialfleand output variable Y, the mutual informationl{X;
ofvariables X and Y represents the amount of infitfom that Y contains. If the input variab¥g meets:

1(X,;Y)=5,(3)
whered, is a correlation threshold. It indicates th; contains a certain amount of information of Y,,i.eX; is
a relevant variable of Y. If the input variabliX; does not meet the above formula (3), the variaglecontains

only negligible information on Y or none at all,caX; is regarded as an irrelevant variable and is ebecluThus,

the variable subset F consists of both strongkyvaett variables and weakly relevant variables shtsfyEqn 3.1t is
necessary that the subset F is further screeneaibethere may exit redundancy in the weakly refevariables.
Redundant variables should be eliminated from thesst F to maintain the correlation between thesstub and
output variable Y.

Mutual information refers to the correlation betwewvo sets of events, and it is difficult to estimanutual
information in a high dimensional case. In ordesitoplify calculation, a subset of variables islagpd by a single
variable to measure the redundancy between a sabsatiables and output variable Y. This articlaws lessons
from the algorithm of min-redundancy max-relevar@®RMR) *¥ which uses the mean value of mutual
information to evaluate the degree of redundancyther words, the mutual information between thgpot Y and
the subset F,I(F;Y), is evaluated as the mean vafillee mutual information between Y and each efdélement of
the subset F, as shown in the following equation :

FY) = Y EY )@
[Flam

whereF; is an element of the subset F.

In this paper, redundant variables are removed backward method. When deleting an input varialde, if the

mutual information between the output Y and sulbseteets the redundancy constraints given inEqn )is a
redundant variable; otherwise, it is a relevantalde.

L(F;Y)-1(F - X,;Y)< 5,1 (F;Y) @)
whered, is a given threshold of redundancy, D[O,l]

The specific steps in the variable selection atbariof distributed mutual information are as folkaw
1) The mutual information of variabl&§X;Y),i =1,2,3..ncan be calculated from Eqn (1).

2) | onaxiSObtained from Eqn (2) based on t-test. Pick avegice threshold, and select all input variable§,

(1 =1,2,...m)that meet the correlation condition (3). Arran§e in a descending order in accordance with the
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values of mutual information to structure the sutilfsketM =F .
3) The mutual information between a subset of teenaining input variables and the output variable,

I (M -M, ;Y) Jis calculated by Egn (4)after each variaMg(i = 12,...,m) is removed in turn.
4) The variabléVl, meets Eqn (5), it is redundant and excluded; otiserwiM, is retained.
5) Repeat Steps 3) and 4) until each variable bas bemoved in turn. Then the algorithm stops.

There are two adjustable parameters in the abogeridim, the relevance threshold, and the redundancy

thresholdd, . J; is determined byl ., which is obtained from the t-test. The higher tdgvalue is, the higher the
requirement of the correlation between variables, subsequently a less number of variablesis seléntthe first
step. The higher the§2value is,the higher the requirement of redundarfoyadables selected, and subsequently a
less number of the variables in the optimal subket

Casestudy

The example is taken from a BisphenolA(BPA)planteréha soft sensor estimates on-line the concemtratf
phenol in a crystallizer tower C303. The materidtieg melting pot V304 is recycled back to cryfitar tower
C303 for crystallizing again. The six auxiliary iables determined through an initial analysis dre three
physically measured variables (temperature, lemeti mass flow of crystal tower C303) and the thesemated
variables (concentration of phenol and BPA in tH#0¥ outlet and concentration of BPA-24 in the C3Q@et).
Finally the concentration of phenol in C303 is mstied with a Support Vector Machine(SVM) modelohder to
select the auxiliary variables related to the primzariable (the concentration of phenol in cryistal unit C303),
150 groups of data were retrieved from the producsite, with 100 groups as the model trainingaset the rest as
the test set. The relevance and redundancy betthiegorimary variable and auxiliary variables in trening data
set were analyzed with the proposed method ofilbligegd mutual information. A support vector machinedel was
established with the optimal subset of measurenmamts/erified with the test data set.

The mutual information of each auxiliary variabledathe primary variable is shown in Table 1. Thetual
information in a descending order is: output BPA/8D4> output phenol of V304> material flow of C30vel of
C303> temperature of C303> output BPA-24 of C303.

Table 1.Mutual information between auxiliary variables and phenol

Variable Mutual information |
Outlet BPA of V304 0.1275
Outlet phenol of V304 0.1176
Material flow of C303 0.0313
Level of C303 0.0075
Temperature of C303 0.0032
Outlet BPA-24 of C303 0.0005

First, it is necessary to determine a thresholds@decting variables of relevance. In order to iheitee the critical
value of rejection domain where the relevance ef phimary variable and auxiliary variables fallsg@up of
random sample set following a normal distributioetvieen 0-1 is generated with a computer. The mutual
information between the primary variable and themadlculated, and the process is repeated 30 tonelstain the

sample set for the t-test. Subsequently, accorttintpe t-test,toozs(n —1) =1t002529 = 2.0452is obtained from

the table for hypothesis testing (30 times at ¢esfla=0.05). Based on Eqn(2)l =0.028€ and
| omax = 0-0291was calculated. The threshold coefficielpis determined as1.05 adjas 0.0306. After an

initially screening, outlet phenol and BPA ofV30ddamaterial flow of C303 are retained. Finally,ituj(b_2 =04

ensures a higher requirement of redundancy in dadeliminate redundant variables, and outlet BR& phenol of
V304 are retained according to thejudgment formeflaaedundancy condition (5). The mean relative rewwb
training and testing are got by the simulationug®ort vector machine model after deleting varigbfessuming the

actual value is Y and the estimated valueYs, MRE is defined as:

N S
MRE:iZu
N=| Yy

x100%0

The simulation results are shown in Table 2.
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The above table indicates that the most auxiliayables lead to the highest training accuracytiitworst testing
accuracy.After the first screening step, the aawjlivariables are outlet BPA of V304, outlet pheabV304, and
mass flow of C303, and the testing accuracy ofitbeel improved. After the redundancy step, onlyaiythenol of
V304 and outlet BPA of V304 are retained, and #wing error is the least.Therefore, retaining maugiliary
variables increases modelcomplexity but cannot awr testing accuracy. Considering both relevanceand
redundancy between auxiliary variables and the gmynvariable lowers the final testing error. An lgsis of the
process indicates that each component of C303 éas lelatively stable; therefore, the concentratbiphenol
mainly depends on the components of V304. Applyng method of variable selection for soft sensmeblaon
distributedmutual information led to retaining tbetlet phenol of V304 and outlet BPA of V304, whichturn
yielded more accurate estimation of phenol in C30® test results are shown in Figure 1.

Table 2.Training and testing after deleting variables

Training (%) Testing (%)

Auxiliary variablesin order toremove Theremaining number of auxiliary variables

MRE MRE
Retain all variables 6 0.42 1.72
Variables after the first step 3 1.45 151
The rest of variables 2 1.28 1.33
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FIGURE 1. Thecomparison of test results

CONCLUSION

The method of variable selection for soft sens@ebdezon distributed mutual information has some athges, well
reflecting linear or nonlinear relevance and redumy between the primary variable and auxiliaryialdes. The
simulation results show that this method effectiveliminates irrelevant and redundant variableduces model
complexity, and improves the estimation accuracy @eneralization capability of the model.
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