A convenient one pot synthesis of some novel benzothiazole and its derivatives

S. G. Badnea*, S. V. Kuberkarb, K. N. Purib, V. W. Banewarc and G. H. Murhekarc

aShri Shivaji College of Arts, Commerce and Science, Shivaji Nagar, Akola, Mahatrashtira, India
bP G Department of Chemistry, Yashwant Mahavidalaya, Nanded, M S, India
cOrganic Synthesis Division, PG Department of Chemistry, Govt. Vidarbha Institute of Science and Humanities, Amravati, M.S., India

Abstract

The one pot synthesis of 3-amino-4-imino-8-methoxy- (2H) Pyrazolo [3’,4’:4,5] pyrimido[2,1-b] benzothiazole and its 2-substituted derivatives is convenient over traditional rout of synthesis of this organic compound. The novel compound are prepare by condensation of 3-cyno-4-imino-2-methylthio-8-methoxy-4H-pyrimido [2,1-b] benzothiazole with 80% Hydrazine hydrate and other reagent. The structure of the compound was verified by 1H NMR and other spectroscopic techniques.

Keywords: Benzothiazole, Hetrocyles, One pot synthesis, Pyrazoles.

Introduction

Material and Methods

The chemical used in this work where reagent grade including hydrazine hydride (Aldrich 99.99%), N,N-Dimethylformamide (Merck, 99.99%), pyridine (Merck, 99.90%), ethanol (Merck, 99%), potassium carbonate (Merck, 99.00%), and distilled water were used.

A mixture of 3-cyno-4-imino-2-methylthio-8-methoxy-4H-pyrimido [2,1-b] benzothiazole (1 mmol) and 80% Hydrazine hydrate 3a, 2-hydrazinobenzothiazole 3b, 6-methyl-2-hydrazinobenzothiazole 3c, 6-chloro-2-hydrazinobenzothiazole 3d, 6-methoxy-2-hydrazinobenzothiazole 3e (2 mmol) were reflux in the presence of N,N-Dimethylformamide (5 ml) and catalytic amount of Potassium Carbonate for 4 hrs. After cooling the solid that appeared were collected by filtration and recrystallised from mixture solvent of DMF and ethyl alcohol to afford crystalline solid of 3a-e.

Scheme –I

![Scheme](image)

Table – 1

<table>
<thead>
<tr>
<th>R</th>
<th>R’</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>-OCH₃</td>
<td>H₂N –N H₂</td>
<td>3 a</td>
</tr>
<tr>
<td>-OCH₃</td>
<td></td>
<td>3 b</td>
</tr>
<tr>
<td>-OCH₃</td>
<td></td>
<td>3 c</td>
</tr>
<tr>
<td>-OCH₃</td>
<td></td>
<td>3 d</td>
</tr>
<tr>
<td>-OCH₃</td>
<td></td>
<td>3 e</td>
</tr>
</tbody>
</table>
Scheme-II

Reflux
Anhydrous K₂CO₃
DMF
3-4 hrs

MeO\-S\-N\-CS\-N\-N\-NH₂

H₂N\-NH₂

Reflux
Anhydrous K₂CO₃
DMF
3-4 hrs

MeO\-S\-N\-CS\-N\-N\-NH₂

H₂N\-N\-S\-C₃H₃

Reflux
Anhydrous K₂CO₃
DMF
3-4 hrs

MeO\-S\-N\-CS\-N\-N\-NH₂

H₂N\-N\-S\-C₃H₃

Reflux
Anhydrous K₂CO₃
DMF
3-4 hrs

MeO\-S\-N\-CS\-N\-N\-OMe

H₂N\-N\-S\-C₃H₃
Tentative mechanism for the formation of compound (3a-e)

The melting points were determined in open capillary tube, and were found to be uncorrected. 1H NMR spectra were measured on Gemini 200 MHz spectrometer with TMS as an internal standard. 13C NMR spectrums were measured on Brucker DPX-400 at 100 MHz with TMS as an internal standard. IR spectrums were recorded in Nujol / KBr palates on Bomen MB 104 FT IR spectrometer. Elemental analyses were performed using a Heraus C, H, N, O rapid analyzer. All reactions were carried out under ambient atmosphere and monitored by Thinlayer Chromatography carried out on 0.2 mm Silica Gel-G-plate using iodine vapor for detection. Mass spectrums were recorded on FT VG-7070 µH Mass spectrophotometer using the EI technique at 70 ev.

Result and Discussion

When 3-cyno-4-imino-2-methylthio-8-methoxy-4H-pyrimido [2,1-b] benzothiazole were reflux independently with 80% Hydrazine hydrate (3a), 2-hydrazinobenzothiazole (3b), 6-methyl-2-hydrazinobenzothiazole (3c), 6-chloro-2-hydrazinobenzoiazole (3d), 6-methoxy-2-hydrazinobenzothiazole (3e), in the presence of N, N-Dimethylfarmamide and catalytic amount of Potassium Carbonate to obtained 2-substituted derivative of 3-amino-8-methoxy-4-imino-2-(2’-benzthiazolyl) (5a-e) respectively.
Table-2: Characterization benzothiazole

![Chemical Structure](image)

<table>
<thead>
<tr>
<th>Comp.</th>
<th>R</th>
<th>R’</th>
<th>Formula</th>
<th>W_i(calc.) / W_i (found) %</th>
<th>M.p. (°C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>-OCH₃</td>
<td>H₂N-NH₂</td>
<td>C₁₂H₁₀N₆OS</td>
<td>50.34/3.49</td>
<td>29.37</td>
</tr>
<tr>
<td>2</td>
<td>-OCH₃</td>
<td></td>
<td>C₁₉H₁₃N₇OS₂</td>
<td>54.41/3.10</td>
<td>23.38</td>
</tr>
<tr>
<td>3</td>
<td>-OCH₃</td>
<td></td>
<td>C₂₀H₁₅N₇OS₂</td>
<td>55.40/3.46</td>
<td>22.63</td>
</tr>
<tr>
<td>4</td>
<td>-OCH₃</td>
<td></td>
<td>C₁₉H₁₂N₇S₂OCl</td>
<td>50.33/2.64</td>
<td>21.63</td>
</tr>
<tr>
<td>5</td>
<td>-OCH₃</td>
<td></td>
<td>C₂₀H₁₅N₇O₂S₂</td>
<td>53.45/3.34</td>
<td>21.82</td>
</tr>
</tbody>
</table>

Spectroscopic Characterization

1) 3-amino-4-imino-8-methoxy (2H)-pyrazolo[3',4';4,5] pyrimido[2,1-b] benzothiazole [3a]
 (KBr/cm⁻¹) 3317-3250 cm⁻¹(bs), 3168-2914, 1635, 1571, 1456, 1282, 1047; δ_H(200 MHz, DMSO-D6) δ: 3.7 (s, 3H), δ: 3.4 (bs, 2H), δ: 6.9-7.7 (m, 3H), δ: 7.9 (s, 1H), δ: 8.3 (s, 1H), m/z (EI, 70ev) 286 (M⁺), 258, 229, 176, 138.

2) 3-amino-4-imino-8-methoxy-2-(2'-benzothiazolyl)pyrazolo[3',4';4,5]pyrimido[2,1-b] benzothiazole [3b]
 (KBr/cm⁻¹) 3481-3363, 3240, 2948, 1629, 1562, 1462, 1278, 1180 cm⁻¹; δ_H(200 MHz, DMSO-D6) δ: 3.3 (s, 3H), δ: 3.5 (s, 2H), δ: 6.6-7.7 (m, 7H), δ: 8.1 (s, 1H); m/z (EI, 70ev) 419(M⁺).

3) 3-amino-4-imino-8-methoxy-2-(6'-methyl-2'-benzothiazolyl)pyrazolo[3',4';4,5]pyrimido[2,1-b] benzothiazole [3c]
 (KBr/cm⁻¹) 3342-3309 (bs), 3140, 2943, 1649, 1521, 1461, 1292, 1112; δ_H(200 MHz, DMSO-D6) δ: 3.0 (s, 3H), δ: 3.6 (s, 2H), δ: 7.0-7.9 (m, 3H), δ: 8.1 (s, 1H); m/z (EI, 70ev) 433 (M⁺ 100%).

385
(KBr/cm$^{-1}$) 3370-3255 (bs), 3190, 2929, 1609, 1516, 1432, 1278, 1184; δ_H(200 MHz, DMSO-D6) δ2.3 (s, 3H), δ2.5 (s, 3H), δ3.5 (s, 2H), δ6.9-7.7 (m, 3H); δ8.2 (s, 1H).

(KBr/cm$^{-1}$) 3390-3267, 3182, 2960, 1625, 1543, 1440, 1274, 1125; δ_H(200 MHz, DMSO-D6) δ2.4 (s, 3H), δ3.4 (bs, 2H), δ3.9 (s, 3H), δ6.9-7.8 (m, 6H); δ8.4 (s, 1H).

Acknowledgements
Authors are thankful to University Grants Commission, New Delhi, for their financial support for this work under Minor Research Project.

References