Research Article

$(4+3)$ cycloaddition reactions in organic synthesis: Synthesis of Bishomomaprotiline [9,10-dihydro-9-(4-methylaminobutyl)-9,10propanoanthracene]

Adel Al-Saeedi ${ }^{\text {a,b }}$, Usama Karama ${ }^{\text {c }}$, Mujeeb A. Sultan ${ }^{\text {c }}$ and Mazahar Farooqui ${ }^{\text {a,d }}$
${ }^{a}$ Post Graduate and Research Center, Maulana Azad College, Aurangabad (MS) India
${ }^{b}$ Faculty of Education Yafea, University of Aden's, Yemen
${ }^{c}$ Department of Chemistry, College of Science, King Saud University, Saudi Arabia
${ }^{d}$ Dr Rafiq Zakaria College for Women, Aurangabad (MS) India

Abstract

The reactions between oxyallyl cations and 9-substituted anthracene to obtain 9,10-dihydro-9,10propanoanthracene substituted have not yet been studied extensively. For this reason, we used ($4+3$) cycloaddition reactions of 9-(4-pentenyl)-anthracene with 1,1,3,3-tetrabromoacetone as key step for preparation of a homologue of maprotiline which has been synthesized and developed into a clinically useful drug for the treatment of depressant by Ciba-Geigy research group in Switzerland.

Keywords: Oxyallyl Cations; (4+3) Cycloaddition Reactions; Homologue; Ludiomil; 1,1,3,3-Tetrabromoacetone.

INTRODUCTION

$(4+3)$ cycloaddition reactions are one of the most powerful and straightforward methods for the synthesis of sevenmembered rings from simple starting materials.[1] These reactions can be used as intermediate in organic synthesis. One of the most applications of $(4+3)$ cycloaddition reactions are to use as intermediate in medicinal moiety. Although the importance of these reactions is that little research work has been done by using anthracene or anthracene derivatives as dienes to obtain 9,10-dihydro-9,10-propanoanthracene. For example, (4+3) cycloaddition reactions of α, α^{\prime}-dibromoketones or $\alpha, \alpha, \alpha^{\prime}, \alpha^{\prime}$-tetrabromoketones such as 1.3 -dibromoacetone or 1.1.3.3tetrabromoacetone as oxyallyl cations with anthracene, 9-methoxyanthracene, 9,10-dimethoxy anthracene, 9alkenylanthracene and 9-phenylanthracene in the presence of reducing agents under different sets of conditions which afforded the cis and/ or trans cycloadducts in good yields.[2-5] In another example, Hardinger., [6,7] reported that the reactions of α, α^{\prime}-bis(sulfonyl) ketones with anthracene in the presence of iron pentacarbonyl and TiCl_{4} gave the expected $(4+3)$ cycloadducts in good yields. The discovery of the antipsychotic activity of chlorpromazine opened the modern era of psychopharmacology. An intense effort ensued in many laboratories to investigate the structure-activity relationships of related compounds. There are many compounds are based on dihydroanthracene in its preparation such as oxaprotiline 1, benzoctamine 2 and maprotiline $\mathbf{3}$ as shown in (Figure. 1). The key step for synthesis of maprotiline (ludiomil) was Diels-Alder reactions of ethylene under high pressure, across the 9,10 positions to give the central 2,2,2-bicyclooctyl moiety.[8,9]

(1)

(2)

(3)

Figure. 1 antidepressants drugs based on dihydroanthracene
Hoffmann and et al.,[10] synthesized homobenzoctamine and homomaprotiline by changing the head of bridge in benzoctamine and maprotiline. Bishomobenzoctamine, also synthesized by $[4+2]$ and $(4+3)$ cycloaddition of some 9-alkenylanthracenes with 2-bromoacrylaldehyde.[11-13]

EXPERIMENTAL SECTION

All Glassware was dried in the oven before use and all reactions were carried out under nitrogen unless otherwise stated. The synthesis of compounds was ascertained by thin layer chromatography (TLC, silica gel $60 \mathrm{~F}_{254}$). Visualization of the TLC plates was carried by using a U. V. lamp and dipping in iodine or dipping in Acidic solution of Vanillin in ethanol then exposed heating by dryer. Column chromatography was performed using silica gel 60-120 mesh or by using thin layer chromatography (TLC) on Merck silica gel 60 covered Glass plates 20x20 cm plates F_{254}. Reactions were monitored by thin layer chromatography (TLC) on Merck silica gel 60 covered alumina plates F_{254}. (TLC) plates were developed under UV light and dipping the (TLC) in iodine or in Acidic solution of Vanillin in ethanol followed by exposure to heating by dryer. Melting points were determined on a MelTemp (Melting temperature) II apparatus and are uncorrected. IR (KBr) spectra were recorded on a Perkin- Elmer 883 spectrophotometer and expressed as $v \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR spectra were measured by using JEOL ECP (400 MHz) in $\mathrm{CDCl}_{3} .{ }^{1} \mathrm{H}$ chemical shifts are expressed as $\delta \mathrm{ppm}$ and coupling constants J were given in Hz . MS spectra and HRMS were performed by using $E I$ at 70 eV . The ultrasonic reaction was carried out using Sonerex 200, 50 W power and frequency 35 kHz .

Synthesis of 9-(4-pentenyl)-anthracene: (5)

A 500 mL clean and dry three-neck round-bottom flask was equipped with a magnetic stirrer, and a reflux condenser with balloon containing of nitrogen was attached, then magnesium ($3.25 \mathrm{~g}, 135.42 \mathrm{mmol}$), THF dry (6 mL) and a small piece of I_{2} was added followed by sealing of the rest of the side slots for flask by a rubber septum. To reaction mixture 5-Bromo-1-pentene ($2 \mathrm{~g}, 13.44 \mathrm{mmol}$) was injected dropwise with stirring the mixture and rubbing the reaction vessel by hands for heating until the disappearance of violet colour for iodine. The remaining quantity from 5-Bromo-1-pentene ($8 \mathrm{~g}, 53.68 \mathrm{mmol}$) was treated with 10 mL THF and it's added dropwise to the reaction mixture with continued stirring for 2 h additional after completion and some the additive to obtain 4-pentenylmagnesium bromide (Grignard reagent).

Anthrone solution $4(10 \mathrm{~g}, 45.67 \mathrm{mmol})$ in anhydrous THF (120 mL) was slowly added to reaction vessel which contains 4-pentenylmagnesium bromide with continued stirring to 2 h , we note the colour mixture is changed from yellow to white yellowish. The mixture is heated under reflux with stirred for $3-4 \mathrm{~h}$ at $50-55^{\circ} \mathrm{C}$, the colour of mixture is changed to dark yellow then it was allowed to cool to room temperature. The reaction mixture was stirred for 8 h at room temperature till reaction completes (checked by TLC) then hydrolyzed with $10 \% \mathrm{HCl}$; if effervescence take place small pieces of ice was added. The organic layer was extracted with ether and the aqueous layer was extracted with ether $(2 \times 50 \mathrm{~mL})$. The organic layer was washed with $\mathrm{NH}_{4} \mathrm{Cl}$, water, and brine then dried over MgSO_{4} anhydrous. The solvent was evaporation and concentrate under vacuum. To crude product was added $(80 \mathrm{~mL})$ of anhydrous benzene and $(10 \mathrm{~g}) \mathrm{P}_{4} \mathrm{O}_{10}$ with stirred for 6 h at room temperature, the $\mathrm{P}_{4} \mathrm{O}_{10}$ was filtered off and the benzene was removed under vacuum. The crude product was purified by flash column chromatography (DCM: Hex) (1:1), give 9-pent-4-enyl-anthracene 5 as yellow solid; mp $71-72^{\circ} \mathrm{C}$; IR (KBr) v/ $\mathrm{cm}^{-1} 3050$, 2914, $2853,1636,1622,1455,916,885,733 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.92\left(\mathrm{qu}, 2 \mathrm{H}, J 8.08, \underline{\mathrm{H} 2}{ }^{\prime}\right), 2.33(\mathrm{q}, 2 \mathrm{H}, J$ $\left.7.32, \underline{H} 3^{\prime}\right), 3.60-3.64\left(\mathrm{~m}, 2 \mathrm{H}, \mathrm{H}^{\prime}\right), 5.06-5.16\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H}} \mathbf{5}^{\prime}\right), 5.93-6.00\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H} 4}{ }^{\prime}\right), 7.25-8.44(\mathrm{~m}, 9 \mathrm{H}, \mathrm{Ar}-\underline{H}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 27.50,30.42,34.35,115.29,138.51,124.53,124.89,125.44,125.50,125.72,126.31$, 128.26, 129.30, 129.64, 131.71, 131.80, 135.11; HRMS (EI) m / z, Calcd. for $\mathrm{C}_{19} \mathrm{H}_{18}[\mathrm{M}]^{+}: 246.1409$, Found: 246.1410 .

Synthesis of 9,10-Dihydro-9-(4-pentenyl)-9,10-propanoanthracene-12-one: (6)

Zinc powdered $(4,38 \mathrm{~g}, 66.98 \mathrm{mmol}), \mathrm{CuCl}(1.87 \mathrm{~g}, 19.10 \mathrm{mmol})$, and small amount of dry dioxane was placed into a flam-dried flask filled. The flask was suspended in an ultrasonic bath $\left(15-20^{\circ} \mathrm{C}\right)$. A solution of $\mathrm{Me}_{3} \mathrm{SiCl}(3.67 \mathrm{~g}$, 33.78 mmol) and 1.1 .3 .3 -tetrabromoacetone ($7.10 \mathrm{~g}, 19 \mathrm{mmol}$) was slowly added, followed by a solution of compound $5(5 \mathrm{~g}, 20.30 \mathrm{mmol})$, in dry dioxane 5 mL . The bath temperature was maintained below $20^{\circ} \mathrm{C}$ for the first hour, and then allowed to slowly reach room temperature. After the mixture had been sonicated for 8 h , the dioxane was evaporated and $\mathrm{MeOH}(28 \mathrm{~mL})$, zinc powdered ($4.36 \mathrm{~g}, 66.98 \mathrm{mmol}$), $\mathrm{CuCl}(1.87 \mathrm{~g}, 19.10 \mathrm{mmol})$ and $\mathrm{NH}_{4} \mathrm{Cl}$ $(5.6 \mathrm{~g})$ was added. After stirring for 6 h at room temperature, the reaction mixture was filtered through silica gel. The residue was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, water, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}, \mathrm{H}_{2} \mathrm{O}$ and brine, dried with MgSO_{4} and concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel (EE: PP: $1: 10$) to give compound 6 as white solid; $\mathrm{mp} 171^{\circ} \mathrm{C}$; IR (KBr) $v / \mathrm{cm}^{-1} 3072,2945,2884,1694,1640,1476,1454$, $1402,1286,1132,912,709$; ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 0.87-0.93\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 2}{ }^{\prime}\right), 2.28-2.30\left(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 1}{ }^{\prime}\right), 2.37-$ 2.41 (m, 2H, H3'), 2.61 ($\mathrm{s}, 2 \mathrm{H}, \underline{\mathrm{H} 13}$), 2.86 (d, 2H, J 3.68, $\underline{\mathrm{H} 11), ~} 4.29$ (t, 1H, J 4.40, H10), 5.09 (dd, 2H, J 10.28, $\left.15.40, \underline{H} 5^{\prime}\right), 5.87-5.94\left(\mathrm{~m}, 1 \mathrm{H}, \underline{\mathrm{H} 4} \mathrm{t}^{\prime}\right), 7.24-7.40(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.99,23.94,28.51$, $33.76,34.43,40.94,43.55,43.58,44.32,50,61,51,20,60,32,115.40,124.46,126.10,126.29,127.05,127.09$, 127.17, 138.30, 141.37, 141.92, 209.19 (s,-C=O); HRMS (EI) m / z, Calcd. for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}: 302.1671$, Found: 302.1673 .

Synthesis of 9,10-Dihydro-9-(4-pentenyl)-9,10-propanoanthracene: (7)

A mixture of ketone ($\mathbf{6}$) ($1.76 \mathrm{~g}, 5.82 \mathrm{mmol}$), $\mathrm{KOH}(1.31 \mathrm{~g}, 23.35 \mathrm{mmol})$, hydrazine hydrate $(4.71 \mathrm{~g}, 94.03 \mathrm{mmol})$ and triethyleneglycol (7 mL) was stirred with refluxed at $150^{\circ} \mathrm{C}$ for 7 h . Then the water was removed by a DeanStark separator, and the reaction mixture was heated for a further 8 h to $200-210^{\circ} \mathrm{C}$. After cooling to room temperature, the reaction mixture was treated with dil. $\mathrm{HCl}(\mathrm{pH}=2$ was reached). The aqueous layer was extracted with toluene, and the combined organic phases were washed with brine, dried with $\left(\mathrm{MgSO}_{4}\right)$ and concentrated under vacuum. The crude product was purified by flash column chromatography on silica gel petroleum ether: ethyl acetate ($5: 1$), give compound 7 as yellow oil; IR $(\mathrm{KBr}) v / \mathrm{cm}^{-1} 3067,3019,2930,2859,1474,1452,910$, $752 ;{ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 0.92-0.95(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 12}), 1.19-1.27(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 2}$) , 1.34-1.39 (m,2H, $\underline{\mathrm{H} 1}$ '), 1.48$1.63(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 13}), 2.28-2.30(\mathrm{~m}, 2 \mathrm{H}, \underline{\mathrm{H} 11}), 3.98(\mathrm{t}, 1 \mathrm{H}, J 3.64, \underline{\mathrm{H} 10}), 5.05(\mathrm{dd}, 2 \mathrm{H}, J 9.56,16.84, \underline{\mathrm{H} 5})$), 5.91-5.95 $(\mathrm{m}, 1 \mathrm{H}, \underline{\mathrm{H} 4}), 7.18-7.35(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.50,29.40,31.72,35.50,39.97,46.25$, 46.49, 49.81, 118.60, 136.51, 123.11-142.85; HRMS (EI) m / z, Calcd. for $\mathrm{C}_{22} \mathrm{H}_{24}[\mathrm{M}]^{+}: 288.1878$, Found: 288.1881.

Synthesis of 4-(9, 10-Dihydro-9, 10-propanoanthracene-9-yl) butanal: (8)
The tetracyclic alkene (7) ($0.75 \mathrm{~g}, 2.60 \mathrm{mmol}$) was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(\mathrm{ca} .12 \mathrm{~mL})$ and ozonolysed at $-78^{\circ} \mathrm{C}$. After complete the reaction (blue colour), $\mathrm{Me}_{2} \mathrm{~S}$ (6 equiv) was added, and the reaction mixture was stirred for further 4 h at room temperature, the volatile components were removed under vacuum. The crude product was purified by flash column chromatography on silica gel petroleum ether: ethyl acetate ($15: 1$), give compound $\mathbf{8}$ as white solid; $\mathrm{mp} 136^{\circ} \mathrm{C}$; IR (KBr) v $/ \mathrm{cm}^{-1} 3069,3019,2926,2870,1726,1474,1452,908,754 ;{ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 1.18-1.42 (m, 2H, H12), 1.49-1.52 (m, 2H, H2'), 1.62-2.17 (m, 6H, $\underline{H 11}, \underline{H 13}, \underline{H 1})^{\prime}$, 2.31-2.35 (m, 2H, H3'), $3.98(\mathrm{t}$, $1 \mathrm{H}, J 3.68, \underline{\mathrm{H} 10}), 10.88(\mathrm{~s}, \mathrm{CHO}), 7.20-7.30(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 14.31,18.82,22.70$, $29.79,35.30,46.27,46.43,46.53,120.60,123.86,124.16,125.27,125.93,126.12,142.51,143.49,202.08$; HRMS (EI) m / z, Calcd. for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}[\mathrm{M}]^{+}: 290.1671$, Found: 290.1673.

Synthesis of 9, 10-Dihydro-9-(4-methylaminobutyl)-9, 10-propanoanthracene: (9)

Titanium (IV) isopropoxide ($0.20 \mathrm{~mL}, 0.50 \mathrm{mmol}$) was added to a commercially available solution of methylamine in methanol ($2 \mathrm{~mol} \mathrm{~L}^{-1}, 15 \mathrm{~mL}$) followed by the addition of the starting aldehyde $\mathbf{8}(0.44 \mathrm{~mL}, 0.44 \mathrm{mmol})$. The reaction mixture was stirred at ambient temperature for 5 h , after which sodium borohydride ($15.5 \mathrm{mg}, 0.38 \mathrm{mmol}$) was added and the resulting mixture was further stirred for another period of 2 h . The reaction was then quenched by the addition of water $(0.2 \mathrm{~mL})$, the resulting inorganic precipitate was filtered and washed with diethyl ether (4 $\mathrm{mL})$. The organic layer was separated and the aqueous part was further extracted with diethyl ether ($2 \times 6 \mathrm{~mL}$). The combined ether extracts were dried $\left(\mathrm{K}_{2} \mathrm{CO}_{3}\right)$ and concentrated in vacuum, give bishomomaprotiline 9 as white viscous liquid; $\mathrm{IR}(\mathrm{KBr}) \mathrm{c} v / \mathrm{m}^{-1} 3410,3073,2963,2926,2870,2853,1599,1476,1450,1261,1093,1020,864$, $800,754,700$, ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 1.25-1.42(\mathrm{~m}, 6 \mathrm{H}, \underline{\mathrm{H} 2}$ ', $\underline{\mathrm{H} 3}, \underline{\mathrm{H} 12}$), 1.75-2.05 (m, 6H, $\underline{\mathrm{H} 1}, \underline{\mathrm{H} 11}, \underline{\mathrm{H} 13})$, $2.35(\mathrm{~s}, 1 \mathrm{H}, \mathrm{N}-\underline{\mathrm{H}}), 2.46\left(\mathrm{~s}, 3 \mathrm{H}, \mathrm{CH}_{3}\right), 2.57\left(\mathrm{t}, 2 \mathrm{H}, J 6, \underline{\mathrm{H} 4} \mathbf{}^{\prime}\right), 3.97(\mathrm{t}, 1 \mathrm{H}, J 4.00, \underline{\mathrm{H} 10}), 7.20-7.27(\mathrm{~m}, 8 \mathrm{H}, \mathrm{Ar}-\underline{\mathrm{H}}) ;{ }^{13} \mathrm{C}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 22.15,24.48,29.69,32.35,36.45,39.53,43.20,46.48,52.35,123.49-144.14$; HRMS (EI) m / z, Calcd. for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}[\mathrm{M}]^{+}: 305.2144$, Found: 305.2144.

RESULTS AND DISCUSSION

In this paper we describe the preparation of 9,10-dihydro-9,10-propanoanthracene-12-one 6, which are used a key intermediate for the synthesis of target compound bishomomaprotiline $\mathbf{9}$ by using ($4+3$) cycloaddition reactions of

9-(4-pentenyl)-anthracene 5 with 1.1.3.3-tetrabromoacetone in ultrasonication at $15-20{ }^{\circ} \mathrm{C}$. The structures of all compounds were established on the basis of literature precedence, analytical results and spectral data.

The first step was the Grignard reaction between anthrone $\mathbf{4}$ and 4-pentenylmagnesium bromide which was prepared from magnesium and 5-Bromo-1-butene in dry tetrahydrofuran by refluxing $3-4 \mathrm{~h}$ at $50-55^{\circ} \mathrm{C}$, followed by acid hydrolysis and dehydration with $\mathrm{P}_{4} 0_{10}$, yielded 9-pent-4-enyl-anthracene $\mathbf{5}$ in good yield as shown in (Scheme. 1).

Scheme1. (a) 5-bromo-1-pentene, Mg, THF, r. t (room temperature), 8h; (b) $\mathrm{C}_{6} \mathrm{H}_{6}, \mathrm{P}_{2} \mathrm{O}_{5}$, r. t, 6h, (yield 82\%)
The IR spectrum for compound 5, absorptions were observed in the range of $3050-2853 \mathrm{~cm}^{-1}$ indicating the presence of ($\mathrm{C}-\mathrm{H}$ stretching aroma) and showed a peak in the range of $1636-1445 \mathrm{~cm}^{-1}$ for ($\mathrm{C}=\mathrm{C}$ stretching), and the absorption band observed at $733 \mathrm{~cm}^{-1}$ for ($\mathrm{C}-\mathrm{H}$ bonding). the ${ }^{1} \mathrm{H}$ NMR spectrum exhibit a characteristic quintet at δ 1.92 ppm for (two protons, H-2'), and showed quartet at $\delta 2.33 \mathrm{ppm}$ for (two protons, H-3'), and showed multiple in the range of $\delta 3.60-3.64 \mathrm{ppm}$ for (two protons, $\mathrm{H}-1^{\prime}$), and showed multiple in the range of $\delta 5.06-5.16 \mathrm{ppm}$ for (two protons, H-5'), and showed multiple in the range of $\delta 5.93-6.00 \mathrm{ppm}$ for (two protons, $\mathrm{H}-4^{\prime}$), and showed multiple in the range of $\delta 7.25-8.44 \mathrm{ppm}$ for (9 proton aromatic). The ${ }^{13} \mathrm{C}$ NMR showed one peak at $\delta 27.50 \mathrm{ppm}$ for (carbon C1^{\prime}), showed one peak at $\delta 30.42 \mathrm{ppm}$ for (carbon C-2'), and showed one peak at $\delta 34.35 \mathrm{ppm}$ for (carbon C-3'), and showed one peak at $\delta 115.29 \mathrm{ppm}$ for (carbon C-5'), and showed one peak at $\delta 138.51 \mathrm{ppm}$ for (carbon C-4'), and showed peaks in the range of $\delta 124.53-135.11 \mathrm{ppm}$ for (aromatic carbons). The mass spectrum showed the molecular ion peak at m / z 246. The HRMS EI Calcd for $\mathrm{C}_{19} \mathrm{H}_{18}\left[\mathrm{M}^{+}\right]$246.1409, Found 246.1410.

The second step was $(4+3)$ cycloaddition reaction of 9 -pent-4-enyl-anthracene 5 to 1.1.3.3-tetrabromoacetone using $\mathrm{Zn}, \mathrm{CuCl} / 1,4$-dioxane and ultrasound at $15-20^{\circ} \mathrm{C}$ followed by reduction of the dibromo cycloadduct with $\mathrm{Zn} / \mathrm{CuCl} / \mathrm{NH}_{4} \mathrm{Cl} / \mathrm{MeOH}$ in same pot without isolation, the cycloadducts 6 was obtained in good yield as shown in (Scheme. 2).

(6)

Scheme2. (a) Tetrabromoacetone, $\mathbf{Z n} / \mathrm{CuCl},\left(\mathrm{CH}_{3}\right)_{3} \mathrm{SiCl}$, dioxane, $\mathbf{1 5 - 2 0}{ }^{\circ} \mathrm{C}$, ultrasonication, $\mathbf{8 h}$; (b) $\mathbf{Z n} / \mathrm{CuCl}, \mathrm{NH}_{4} \mathrm{Cl}$, methanol, \mathbf{r}. $\mathbf{t}, \mathbf{6 h}$, (yield 72\%)

The IR spectrum for compound 6 exhibited a strong peak at $1694 \mathrm{~cm}^{-1}$ for $\left(\mathrm{C}=\mathrm{O}\right.$ stretching). The ${ }^{1} \mathrm{H}$ NMR spectrum showed a multiple in the range of $\delta 0.87-0.93 \mathrm{ppm}$ for (two proton, $\mathrm{H}-2^{2}$), and a multiple in the range of $\delta 2.28-2.30$ ppm for (two proton, $\mathrm{H}-1^{\prime}$), and a multiple in the range of $\delta 2.37-2.41 \mathrm{ppm}$ for (two proton, $\mathrm{H}-3^{\prime}$), and Singlet at δ 2.61 ppm for (two proton, $\mathrm{H}-13$), and doublet at $\delta 2.86 \mathrm{ppm}$ for (two proton, $\mathrm{H}-11$), and triplet at $\delta 4.29 \mathrm{ppm}$ for (one proton, $\mathrm{H}-10$), and a multiple in the range of $\delta 5.87-5.94 \mathrm{ppm}$ for (one proton, $\mathrm{H}-4$ '), and doublet of doublet at
$\delta 5.09 \mathrm{ppm}$ for (two proton, H-5'). The ${ }^{13} \mathrm{C}$ NMR exhibit one peak at $\delta 209.19 \mathrm{ppm}$ for carbon ketone ($\mathrm{C}=\mathrm{O}$). The mass spectrum showed the molecular ion peak at m / z 302. The HRMS EI Calcd for $\mathrm{C}_{22} \mathrm{H}_{22} \mathrm{O}\left[\mathrm{M}^{+}\right] 302.1671$, Found 302.1673.

To convert the carbonyl group in to a methylene group, we used mild method at room temperature by conversion of ketone to tosylhydrazones, then reduction of hydrazone using $\mathrm{NaBH}_{3} \mathrm{CN}$, but this method did not prove successful on the ketone tetracyclic. Therefore, we used the Wolff-Kishner reduction modified (Huang-Minlon) by treatment of ketone tetracyclic (6) with hydrazine hydrate in the presence of potassium hydroxide at a high boiling solvent triethylene glycol to obtain tetracyclic hydrocarbon 7 as shown in (Scheme. 3).

Scheme3. (a) $\mathbf{8 5 \%} \mathrm{H}_{2} \mathrm{~N}-\mathrm{NH}_{2}, \mathrm{KOH}$, triethylene glycol, $150{ }^{\circ} \mathrm{C}$, $\mathbf{5 h}$; (b) $\mathbf{2 0 0 - 2 2 0}{ }^{\circ} \mathrm{C}$, $\mathbf{5 h}$, (yield 66%)
The IR spectrum for compound 7 disappearance a strong peak at $1694 \mathrm{~cm}^{-1}$ for $(\mathrm{C}=\mathrm{O})$. The ${ }^{1} \mathrm{H}$ NMR spectrum showed multiple in the range of $\delta 0.92-0.95$ for (two proton, $\mathrm{H}-12$). The ${ }^{13} \mathrm{C}$ NMR disappearance of singlet peak at δ 209.19 ppm for $(\mathrm{C}=\mathrm{O})$ indicative of transference carbonyl to methylene. The mass spectrum showed the molecular ion peak at m / z 288. The HRMS EI Calcd for $\mathrm{C}_{22} \mathrm{H}_{24}\left[\mathrm{M}^{+}\right] 288.1878$ Found 288.1881.

The reaction of tetracyclic hydrocarbon 7 with ozone by use dimethyl sulfide in methylene chloride is a general and selective method of cleaving carbon-carbon double bonds. This method gave the crystalline aldehyde $\mathbf{8}$ as shown in (Scheme. 4).

The IR spectrum for compound 8 showed strong peak at $1726 \mathrm{~cm}^{-1}$ for $(\mathrm{C}=\mathrm{O})$ aldehyde. The ${ }^{1} \mathrm{H}$ NMR showed a characteristic singlet at $\delta 10.88 \mathrm{ppm}$ for (CHO). The ${ }^{13} \mathrm{C}$ NMR showed a peak at $\delta 202.08 \mathrm{ppm}$ for carbon (CHO). The mass spectrum showed the molecular ion peak at $m / z 290$. The HRMS EI Calcd for $\mathrm{C}_{20} \mathrm{H}_{22} \mathrm{O}\left[\mathrm{M}^{+}\right] 290.1671$ Found 290.1673.

As a part of our interest for reductive amination of aldehyde $\mathbf{8}$ to corresponding amine $\mathbf{9}$, we chose a simple and efficient method in one-pot with inexpensive reagent systems and high yields of pure products. In this method we used a combination of titanium (IV) isopropoxide and sodium borohydride with methyl amine in methanol for obtain the target compound bishomomaprotiline 9 as shown in (Scheme. 5).

The IR spectrum for compound 9 showed one peak at $3410 \mathrm{~cm}^{-1}$ for ($\mathrm{N}-\mathrm{H}$ secondary amine) with disappearance a strong peak at $1726 \mathrm{~cm}^{-1}$ for (CHO). In the ${ }^{1} \mathrm{H}$ NMR showed two peak singlet at $\delta 2.35 \mathrm{ppm}$ and $\delta 2.46 \mathrm{ppm}$ due to the active ($\mathrm{N}-\mathrm{H}$ protons, $3 \mathrm{H}, \mathrm{CH}_{3}$). The ${ }^{13} \mathrm{C}$ NMR showed disappearance peak at $\delta 202.08$ for carbon (CHO). The mass spectrum is revealed the molecular ion peak at $\mathrm{m} / \mathrm{z} 305$ which resembles the formula weight. The HRMS EI Calcd for $\mathrm{C}_{22} \mathrm{H}_{27} \mathrm{~N}\left[\mathrm{M}^{+}\right]$305.2144 Found 305.2144.

CONCLUSION

In conclusion, we have described simple and flexible steps to synthesize of bishomomaprotiline $\mathbf{9}$, from simple starting materials by changing the length of the hydrocarbon chain and bridgehead. The key step was accomplished through the ultrasonic $(4+3)$ cycloaddition reactions of 1.1.3.3-tetrabromoacetone on 9-pent-4-enyl-anthracene 5 . The name and structures of all compounds were established on the basis of literature precedence, analytical results and spectral data. Our future plan is to study the relationship between the structure of the final compound and biological activity.

Acknowledgments

Project was supported by King Saud University, Deanship of Scientific Research, and College of Science Research Center.

REFERENCES

[1] DT Craft, BW; Gung. Tetrahedron Lett., 2008, 49 (41), 5931-5934.
[2] AOS Abd El-Wareth; HMR Hoffmann. Chew. Ber., 1994, 127 (9), 1755-1760.
[3] J G Raymond; IR David; HMR Hoffmann. Synthesis Stuttg., 1978, (12), 902-905.
[4] AOS Abd El-Wareth. J. Chem. Res., 1999, (S), 24-25.
[5] HMR Hoffmann; U, Karama. Chem. Ber., 1992, 125 (12), 2803-2807.
[6] AH Steven; B Christopher; K Eric; M Richard; L Louis; N Mary-Ann. J.Org. Chem., 1995, 60 (5), 1104-1105.
[7] F Hans-Werner. Chem. Rev., 1997, 97 (3), 523-596.
[8] M Wilhelm; P Schmidt. Helv. Chim. Acta., 1969, 52 (6), 1385-1395.
[9] L Daniel. Strategies for Organic Drug Synthesis and Design, Second Edition, John Wiley and Sons, New Jersey. 2009; 110.
10] U Karama; HMR Hoffmann. Chem. Ber., 1992, 125 (12), 2809-2812.
[11] U Karama; A Al-Saeedi; AR Almansour. J. Chem. Res., 2010, 34 (5), 241-242.
[12] U Karama; A AL-Saeedi; Z Al-Othman; AR Almansour. Molecules., 2010, 15 (6), 4201-4206.
[13] A Al-Saeedi; U Karama; M Farooqui. Asian Journal of Research in Chemistry., 2012, 5 (12), 1460-1463.

